Решение третьей задачи. Принцип Дюамеля. Полная формула Киргофа
u(x, t) = ν(x, t, τ)dτ = (t − τ)f(x + a(t − τ)ξ, τ)dSξdτ |
|
Δu = Δν(x, t, τ)dτ ut = νt(x, t, τ)dτ + ν(x, t, t) = νt(x, t, τ)dτ |
|
utt = νtt(x, t, τ)dτ + νt(x, t, t) = νt(x, t, τ)dτ + f(x, t) |
|
utt − a2Δu = (νtt − a2Δu)(x, t, τ)dτ + f(x, t) = f(x, t) |
u(x, t) = ν(x, t, τ)dτ, ut(x, t) = νt(x, t, τ)dτ
u(x, 0) = ν(x, 0, τ)dτ = 0, ut(x, 0) = νt(x, 0, τ)dτ = 0