Симметрия функции Грина
Следствие
g(x, y) = g(y, x)
Δyg(x, y) = 0
ΔyG(x, y) = 0
G(x, y) = 0 (x ∈ Ω)
g(x, y) = G(x, y) − E(x, y) = G(y, x) − E(y, x) = g(y, x)
Δyg(x, y) = Δyg(y, x) = 0
ΔyG(x, y) = ΔyG(y, x) = 0
G(x, y) = G(y, x) = 0
Следствие
g(x, y) = g(y, x)
Δyg(x, y) = 0
ΔyG(x, y) = 0
G(x, y) = 0 (x ∈ Ω)
g(x, y) = G(x, y) − E(x, y) = G(y, x) − E(y, x) = g(y, x)
Δyg(x, y) = Δyg(y, x) = 0
ΔyG(x, y) = ΔyG(y, x) = 0
G(x, y) = G(y, x) = 0