Глава 2. Ускорение. Равноускоренное движение

Характеристикой изменения скорости является ускорение. Эта величина определяется как отношение изменения скорости тела к тому интервалу времени, за который это изменение произошло

(2.1)

где и — скорости тела в конце и начале интервала времени . Из определения (2.1) следует, что вектор ускорения тела отличен от нуля только в том в случае, когда изменяется вектор скорости. При этом направление вектора определяется направлением разности , и может не совпадать с направлениями векторов и . Поэтому в задаче 2.1.1 ситуации, перечисленные в ответах 1, 3 и 4, возможны в следующих случаях. В 1 — когда тело, поворачивая на восток, в некоторый момент времени имеет вектор скорости, направленный на север. В 3 — при равноускоренном движении. В 4 — например, в такой ситуации: тело бросили вертикально вверх и в верхней точке траектории оно имеет нулевую скорость и ускорение, равное ускорению свободного падения. Ситуация, сформулированная в ответе 2, невозможна: если у тела постоянная скорость, то у него равное нулю и, следовательно, постоянное ускорение.

В задаче 2.1.2 вектор скорости в конце любого интервала времени меньше вектора скорости в начале этого интервала. Поэтому при направлении вектора скорости на юг вектор изменения скорости, а, следовательно, и вектор ускорения направлены на север (ответ 3).

Если тело движется с постоянной скоростью, координата линейно зависит от времени, причем наклон графика определяется скоростью. Поэтому скорость тела уменьшается, если уменьшается угол наклона графика зависимости координаты от времени к оси времени (задача 2.1.3 — ответ 4).

Движение тела, при котором его ускорение (как величина, так и направление) не изменяется, называется равноускоренным (задача 2.1.4 — ответ 4). Из определения ускорения (2.1) следует, что при равноускоренном движении зависимость скорости от времени является линейной. Поэтому равноускоренному движению в задаче 2.1.5 отвечает график 1 (несмотря на то, что скорость тела убывает). В этой связи отметим, что равноускоренность означает не то, что тело постоянно разгоняется, а то, что оно имеет «равное ускорение».

При равноускоренном движении зависимости радиус-вектора тела по отношению к произвольной системе координат и скорости тела от времени даются соотношениями

(2.2)

(2.3)

где и — радиус-вектор и скорость тела в момент времени , — ускорение тела. После проецирования на оси координат зависимости (2.2) и (2.3) позволяют находить координаты тела и проекции его скорости на оси в любые моменты времени.

В задаче 2.1.6 зависимость (2.2) в проекциях на ось , которая направлена параллельно ускорению и начало которой находится в точке начала движения, дает

Поскольку тело движется из начала координат и только в одну сторону, то, очевидно, координата тела совпадает с пройденным путем. Поэтому при ускорении через 20 с после начала движения пройденный путь будет равен 100 м (ответ 2). Из этого результата следует, что задача 2.1.7 является обратной по отношению к задаче 2.1.6, поэтому правильный ответ для времени, за которое тело пройдет путь 100 м — 20 с (ответ 1).

В задаче 2.1.8 необходимо использовать зависимость (2.3) для скорости. Так как по условию автомобиль движется из состояния покоя, проекция зависимости (2.3) на ось , направленную вдоль вектора ускорения, имеет вид

где – проекция вектора скорости тела на ось . Так как в момент времени , находим (правильный ответ – 2).

Сравнивая данную в задаче 2.1.9 зависимость координаты от времени с законом (2.2), заключаем, что начальная скорость тела , проекция ускорения тела на ось . Поэтому из (2.3) получаем зависимость скорости тела от времени .

Из этой зависимости следует, что скорость тела равна нулю при (правильный ответ 2). Можно было также найти скорость как производную координаты по времени. Дифференцируя данную в условии функцию, получим тот же ответ

Зависимость проекции скорости от времени на ось, направленную вертикально вверх, для тела из задачи 2.1.10 имеет вид

где — начальная скорость тела. Подставляя в эту формулу время , находим скорость тела через 0,5 с после броска (ответ 3). Знак «плюс» для проекции скорости на рассматриваемую ось показывает, что через 0,5 c после броска вектор скорости тела все еще направлен вверх.

Чтобы найти время подъема тела, брошенного вертикально вверх, на максимальную высоту (задача 2.2.1) используем то обстоятельство, что в верхней точке траектории скорость тела равна нулю. Поэтому подстановка времени подъема в зависимость скорости от времени дает

где — начальная скорость тела. Отсюда получаем для времени подъема (ответ 4). А самую максимальную высоту подъема (задача 2.2.2) можно найти, подставляя найденное время подъема в зависимость координаты тела по вертикальной оси от времени

Подстановка в эту формулу числовых значений дает (ответ 1).

Пусть время, затраченное телом на прохождение участка пути длиной , отсчитанного от начальной точки, равно , а время, затраченное телом на прохождение участка пути длиной , отсчитанного от этой же точки, равно (задача 2.2.3). Тогда из уравнения движения (2.2) в проекции на ось, направленную вдоль вектора ускорения тела, имеем

Деля первое уравнение на второе и извлекая из этого отноше-ния квадратный корень, находим

что означает, что время прохождения пути меньше времени прохождения пути в раз (ответ 2).

В некоторых ситуациях приходится применять одновременно обе зависимости — и координаты и скорости. Например, в задаче 2.2.4 зависимости координаты тела по вертикальной оси и проекции скорости на эту ось имеют вид

Из первой зависимости находим время, за которое тело поднимается на высоту

(Два корня для времени получилось, поскольку на рассматриваемой высоте тело побывало дважды — в процессе подъема и в процессе спуска.) Подставляя эти значения времени в уравнение для скорости, получим для проекции скорости на вертикальную ось на высоте :

(«плюс» — на подъеме, «минус» — на спуске). Отсюда находим величину скорости тела на этой высоте — 15 м/с (ответ 3).

Иногда в задачах на равноускоренное движение требуется найти интервалы времени или расстояния, отсчитанные не от момента начала движения или от начального положения тела. Трудность таких задач заключается в том, что такие времена или расстояния сами не входят в уравнения равноускоренного движения. В этом случае искомые интервалы времени или расстояния удобно находить как разность интервалов времени или расстояний, отсчитанных от начала движения. Например, зависимость координаты автомобиля от времени в задаче 2.2.5 дается соотношением

где — ускорение автомобиля, в качестве начала координат выбрана точка начала движения. Из этой зависимости находим, что через 2 с после начала движения автомобиль окажется на расстоянии 4 м от начальной точки, через 3 с после начала движения — на расстоянии 9 м от начальной точки. Поэтому за третью секунду движения автомобиль пройдет путь 5 м — ответ 3.

Аналогично в задаче 2.2.6 из зависимости координаты тела от времени находим, что автомобиль окажется на расстоянии 2 м от начальной точки через время с, на расстоянии 3 м — через время с. Поэтому на прохождение третьего метра пути автомобиль затратит время с (ответ 2).

В задаче 2.2.7 следует из зависимости скорости от времени найти время падения, а затем подставить его в зависимость координаты от времени. Правильный ответ — 1.

При движении тела под углом к горизонту вектор ускорения тела направлен вертикально вниз (ускорение свободного падения — ). Поэтому проекция зависимости скорости от времени (2.3) на горизонтальную ось имеет вид

где – начальная скорость тела, – угол, под которым бросили тело (проекция вектора ускорения тела на горизонтальную ось равна нулю). Из этой формулы следует, что проекция скорости на горизонтальную ось не зависит от времени (задача 2.2.8 – правильный ответ 4).

Дальность полета тела, брошенного под углом к горизонту, определяется из проекции уравнения (2.2) на горизонтальную ось

где — проекция вектора начальной скорости на горизонтальную ось, — полное время движения. По условию задачи 2.2.9 проекции векторов начальной скорости тел на горизонтальную ось одинаковы (это подчеркнуто на рисунке в условии с помощью вертикальной пунктирной прямой). Поэтому дальше улетит то из них, у которого больше время движения. А оно, в свою очередь, определяется проекцией уравнения (2.2) на вертикальную ось

поскольку в момент падения вертикальная координата тела равна нулю. Отсюда следует, что время движения равно , т.е. определяется проекцией вектора начальной скорости на вертикальную ось. А она по условию больше у тела 1, которое, таким образом, и улетит дальше (ответ 1).

Задача 2.2.10 содержит небольшой «подвох». При движении тела по прямой и в одном направлении пройденный путь равен разности координат конца и начала траектории. В этом случае можно, выбрав начало координат в начальной точке, найти пройденный путь, просто подставляя время в уравнение для координаты. В нашем же случае тело движется сначала вверх, потом вниз. Действительно, время подъема для тела, брошенного вертикально вверх со скоростью 20 м/с, равно 2 с. А пройденный путь нужно найти за 3 с после броска. Поэтому пройденный путь складывается из максимальной высоты подъема (для тела, брошенного со скоростью 20 м/с, она равна 20 м) и длины участка пути от верхней точки траектории до точки, в которой тело окажется через 3 с после броска. Координату этой точки в системе координат, начало которой расположено на земле, а ось направлена вертикально вверх, можно найти, подставляя это значение времени в уравнение

(все величины заданы в международной системе единиц СИ). В результате находим, что пройденный телом путь равен 25 м (ответ 3).