Глава 2. Постановка основных краевых задач для линейного дифференциального уравнения второго порядка. Задача Коши. Теорема Ковалевской.

2.1. Классификация краевых задач.

Линейное дифференциальное уравнение второго порядка

$$\rho \frac{\partial^2 u}{\partial t^2} = \operatorname{div}(p \operatorname{grad} u) - qu + F(x, t) = 0$$
 (2.1.1)

описывает процессы колебаний, уравнение

$$\rho \frac{\partial u}{\partial t} = \operatorname{div}(p \operatorname{grad} u) - qu + F(x, t) = 0 \tag{2.1.2}$$

описывает процессы диффузии и наконец уравнение

$$-div(p \operatorname{grad} u) + qu = F(x,t)$$
(2.1.3)

описывает соответствующие стационарные процессы.

Пусть $G \subset \mathbb{R}^n$ — область, где происходит процесс, и S — ее граница, которую считаем кусочно-гладкой поверхностью.

Таким образом, G есть область изменения аргументов x в уравнении (2.1.3) – область задания уравнения (2.1.3).

Областью задания уравнений (2.1.1) и (2.1.2) будем считать цилиндр $\mathcal{U}_T = G \times (0,T)$ высоты T и с основанием G. Его граница состоит из боковой поверхности $S \times [0,T]$ и двух оснований: нижнего $\bar{G} \times \{0\}$ и верхнего $\bar{G} \times \{T\}$.

Будем предполагать, что коэффициенты ρ, p и q уравнений (2.1.1)-(2.1.3) не зависят от времени t; далее, в соответствии с их физическим смыслом, будем считать, что $\rho(x) > 0, p(x) > 0, q(x) \geqslant 0, x \in \overline{G}$. Наконец, в соответствии с математическим смыслом уравнений (2.1.1)-(2.1.3), необходимо считать что $\rho \in C(\overline{G}), p \in C^1(\overline{G})$ и $q \in C(\overline{G})$.

При этих предположениях, согласно классификации, уравнение колебаний (2.1.1) — гиперболического типа, уравнение диффузии (2.1.2) — параболического типа и стационарное уравнение (2.1.3) — эллиптического типа. Таким образом, различие в типах рассматриваемых уравнений тесно связано с различием физических процессов, описываемых этими уравнениями.

Чтобы полностью описать тот или иной физический процесс, необходимо, кроме самого уравнения, описывающего этот процесс, задать начальное состояние этого процесса (начальные условия) и режим на границе той области, в которой происходит этот процесс (граничные условия).

Математически это связано с неединственностью решения дифференциальных уравнений. Действительно, даже для обыкновенных уравнений n- порядка общее решение зависит от n произвольных постоянных. Для уравнений же в частных производных решение, вообще говоря, зависит от произвольных функций; например, общее решение уравнения $u_{xy} = 0$ в классе функций, зависящих от переменных x и y, имеет вид

$$u(x, y) = f(x) + g(y)$$
 где $f(x)$ и $g(y)$

- произвольные функции класса C^1 . Поэтому чтобы выделить решение, описывающее реальный физический процесс, необходимо задавать дополнительные условия.

Такими дополнительные условиями являются краевые условия: начальные и граничные условия. Соответствующая задача называется краевой задачей. Таким образом, краевая задача математической физики — это дифференциальное (интегро-дифференциальное) уравнение (или система уравнений) с заданными краевыми условиями.

Различают, таким образом, следующие три основных типа краевых задач для дифференциальных уравнений.

- а) Задача Коши для уравнений гиперболического и параболического типов: задаются начальные условия, область G совпадает со всем пространством \mathbb{R}^n граничные условия отсутствуют.
- б) Краевая задача для уравнений эллиптического типа: задаются граничные условия на границе S, начальные условия, естественно, отсутствуют
- в) Смешанная задача для уравнений гиперболического и параболического типов: задаются и начальные и граничные условия, $G \neq \mathbb{R}^n$.

2.2. Задача Коши

Пусть дана следующая система уравнений с частными производными относительно неизвестных функций $u_q, ..., u_N$ по независимым переменным $t, x_1, ..., x_n$:

$$\frac{\partial^{n_i} u_i}{\partial t^{n_i}} = F_i \left(t, x_1, ..., x_n, u_1, ..., u_n, ..., \frac{\partial^k u_j}{\partial t^{k_0} ... \partial x_n^{k_n}} \right),$$

$$k_1 + ... + k_n = k \le n_j; \ k_0 < n_j; \ i, j = 1, 2, ..., N.$$
(2.2.1)

Число уравнений равно числу неизвестных функций.

При некотором значении $t = t_0$ задаются значения («начальные значения») неизвестных функций u_i и их производных по t до порядка $n_i - 1$.

Пусть при $t = t_0$

$$\frac{\partial^k u_i}{\partial t^k} = \varphi_i^{(k)}(x_1, ..., x_n) \quad (k = 0, 1, ..., n_i - 1). \tag{2.2.2}$$

Все функции $\varphi_i^{(k)}(x_1,...,x_n)$ заданы в одной и той же области G_0 пространства G_0 пространства $(x_1,...,x_n)$. Производной нулевого порядка от функции u_i мы считаем саму функцию u_i .

Задача Коши состоит в том, чтобы найти решение системы (2.2.1), удовлетворяющее при $t=t_0$ начальным условиям (2.2.2).

Решение ищется в некоторой области G пространства $(t, x_1, ..., x_n)$, прилегающей к области G_0 на гиперплоскости $t = t_0$, где заданы условия (2.2.2).

2.2.1. Теорема Ковалевской

Определение 2.2.1. Функция $f(z) = f(z_1,...,z_m)$ от т комплексных переменных называется аналитической в окрестности точки $z^0 = (z_1^0,...,z_m^0)$, если она представима в виде сходящегося степенного ряда

$$f(z) = \sum_{\alpha} c_{\alpha} (z - z^{0})^{\alpha},$$

где

$$c_{\alpha} = \frac{D^{\alpha} f(z^{0})}{\alpha!}, (z - z^{0})^{\alpha} = (z - z_{1}^{0})^{\alpha_{1}} \cdot \dots \cdot (z - z_{m}^{0})^{\alpha_{m}},$$

$$\alpha! = \alpha_{1}! \cdots \alpha_{m}!, 0! = 1, \alpha = (\alpha_{1}, \dots, \alpha_{m}).$$

Теорема 2.2.1 (Ковалевская). Если все функции F_i аналитичны в некоторой окрестности точки $(t_0, x_1^0, ..., x_n^0, ..., \varphi_{j,k_0,k_1,...,k_n}^0, ...)$ и все функции $\varphi_j^{(k)}$ аналитичны в окрестности точки $(x_1^0, ..., x_n^0)$, то задача Коши имеет аналитическое решение в некоторой окрестности точки $t^0, x_1^0, ..., x_n^0$ и притом единственное в классе аналитических функций.

В случае линейных уравнений она имеет вид:

Теорема 2.2.1 (Ковалевская). Пусть в Ω задано уравнение

$$Lu = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha} u = f(x)$$
, где $u = u(x_1, ..., x_m, t)$,

- 1) $a_{\alpha}(P) \neq 0$ npu $\alpha = (0,...,m)$;
- $(2)a_{\alpha}(P), |\alpha| \leq m, \ f(x)$ аналитические функции в окресности точки P;
- 3) $\varphi_j(x')$, j=0,1,...,-1 аналитические функции в окресности точки P' $x'=(x_1,...,x_n-1).$

Тогда существует единственная аналитическая в окрестности Ω_1 точки P, функция u(x), которая удовлетворяет

$$Lu(x) = f(x)$$
 ϵ Ω_1

и с начальными условиями:

$$u|_{t=t_0} = \varphi_0,$$
 $D_t^j u|_{t=t_0} = \varphi_i, \quad j = 1, ..., m-1.$

В 1901г Е. Хольмгрен заметил, что с помощью теоремы Ковалевской можно получить теорему единственности решения задачи Коши в классе неаналитических функций, если предположить, что коэффициенты системы уравнений аналитические, а решения имеют непрерывные производные порядков $\leq m$.

Теорема 2.2.3. (Хольмгрен). Пусть u(t,x) – решение системы

$$\frac{\partial^m u}{\partial t^m} = \sum_{\substack{|\alpha|+k \leqslant m \\ k < m}} a_{k,\alpha}(t,x) \frac{\partial^k}{\partial t^k} D^\alpha u(t,x) + f(t,x)$$

коэффициенты которой аналитические по (t,x) а f(t,x) при $0 \leqslant t \leqslant T$ и $x \in \Omega$ и выполнены условия

$$u = 0, \frac{\partial u}{\partial t} = 0, \dots, \frac{\partial^{m-1} u}{\partial t^{m-1}} = 0$$
 $\ddot{\partial} \dot{\partial} t = 0, x \in \Omega$.

Пусть $u \in C^m([0,T] \times \Omega)$. Тогда найдутся такие $T' \in (0,T)$ и $\Omega' \subset \Omega$, что область Ω' непуста u

$$u(t, x) = 0$$
 $[0, T'] \times \Omega'$.

Удивительным является то обстоятельство, что даже при m=2 существуют уравнения вида

$$\sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha} u = f(x)$$

с бесконечно дифференцируемыми коэффициентами $a_{\alpha}(x)$ и бесконечно дифференцируемой функцией f(x) которые в любой окрестности точки x^0 не имеют ни одного решения. Такие уравнения называются локально неразрешимыми. Впервые пример такого уравнения первого порядка с комплекснозначными коэффициентами (уравнение первого порядка с комплекснозначными коэффициентами эквивалентно системе двух уравнений первого порядка с действительными коэффициентами, которой удовлетворяют действительная и мнимая части решения уравнения) был построен Γ . Леви в 1957 Γ . Уравнение Γ . Леви имеет следующий вид:

$$-\frac{\partial u}{\partial x_1} - i\frac{\partial u}{\partial x_2} + 2i(x_1 + ix_2)\frac{\partial u}{\partial x_3} = \varphi'(x_3)$$

в пространстве \mathbb{R}^3 . Если функция u непрерывно дифференцируема в окрестности начала координат в \mathbb{R}^3 , то φ должна быть вещественно аналитической функцией от x_3 . Поэтому если функция φ не является

вещественно аналитической в начале координат, то, подставляя φ в правую часть уравнения, мы получим уравнение, не имеющее решения ни в какой окрестности начала координат. Л. Хёртмандер привел объяснение этого факта с совершенно иной точки зрения. Л. Хёртмандер доказал, что уравнение второго порядка с действительными коэффициентами вида

$$(x_2^2 - x_3^2)u_{x_1x_1} + (1 + x_1^2)(u_{x_2x_2} - u_{x_3x_3}) - x_1x_2u_{x_1x_3} - (x_1x_2u)_{x_1x_2} + x_1x_3u_{x_1x_3} + (x_1x_3u)_{x_1x_3} = f(x)$$

не имеет ни одного решения при некоторой функции $f(x) \in C^{\infty}(\mathbb{R}^n)$ для любой области $\Omega \in \mathbb{R}^n$. В настоящее время известны широкие достаточные условия локальной неразрешимости уравнений с частными производными.

Доказательство теоремы Ковалевской мы дадим для произвольных линейных систем. Задача Коши для таких систем легко сводится к задаче Коши для линейных систем первого порядка с помощью приема, который мы, для простоты изложения, проиллюстрируем на примере одного уравнения второго порядка

$$\frac{\partial^2 u}{\partial t^2} = \sum_{i,j=1}^n a_{ij}(t, x_1, \dots, x_n) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^n a_{0i}(t, x_1, \dots, x_n) \frac{\partial^2 u}{\partial t \partial x_i} + \\
+ \sum_{i=1}^n b_i(t, x_1, \dots, x_n) \frac{\partial u}{\partial x_i} + b_0(t, x_1, \dots, x_n) \frac{\partial u}{\partial t} + c(t, x_1, \dots, x_n) u + f(t, x_1, \dots, x_n), \quad (2.2.3)$$

где $a_{ij} = a_{ji}, b_i, c, f$ --- аналитические функции своих аргументов в окрестности точки $(t^0, x^0) = (t^0, x_1^0, \dots, x_n^0)$.

Задача Коши для этого уравнения состоит в нахождении решения, удовлетворяющего следующим начальным условиям:

$$u(t^{0}, x) = \varphi_{0}(x),$$

$$u_{t}(t^{0}, x) = \varphi_{1}(x),$$
(2.2.4)

где φ_0 и φ_1 — аналитические функции в окрестности точки $x^0=(x_1^0,\dots,x_n^0)$.

Без ограничения общности можно считать, что

$$t^0 = x_1^0 = \ldots = x_n^0 = 0,$$

так как случай произвольных t^0, x_1^0, \dots, x_n^0 сводится к этому заменой независимых переменных, которая не меняет вид уравнения.

Если функция u(t,x) удовлетворяет уравнению (2.2.3) и начальным условиям (2.2.4), то очевидно, что функции

$$u, u_0 = \frac{\partial u}{\partial t}, u_k = \frac{\partial u}{\partial x_k}, k = 1, 2, ..., n$$

удовлетворяют уравнениям

$$\frac{\partial u_0}{\partial t} = \sum_{i,j=1}^n a_{ij} \frac{\partial u_i}{\partial x_j} + \sum_{i=1}^n a_{0i} \frac{\partial u_0}{\partial x_i} +
+ \sum_{i=1}^n b_i u_i + b_0 u_0 + c u + f,
\frac{\partial u_k}{\partial t} = \frac{\partial u_0}{\partial x_k}, k = 1, ..., n,
\frac{\partial u}{\partial t} = u_0$$
(2.2.5)

и начальным условиям

$$u(0,x) = \varphi_0(x),$$

$$u_0(0,x) = \varphi_1(x),$$

$$u_k(0,x) = \frac{\partial \varphi_0(x)}{\partial x_k}, \quad k = \overline{1,n}.$$

$$(2.2.6)$$

Докажем обратное утверждение: если функции $u,u_0,u_1,...,u_n$ удовлетворяют уравнениям (2.2.5) в некоторой области G пространства (t,x), прилегающей к области G_0 пространства x и начальным условиям (2.2.6) в области G_0 , то во всей области G функция u(t,x) удовлетворяет уравнению (2.2.3) и начальным условиям (2.2.4).

Действительно, из соотношения (2.2.5) следует, что всюду в области G

$$u_0 = \frac{\partial u}{\partial t}.$$

Подставляя $\frac{\partial u}{\partial t}$ вместо u_0 в правую часть (2.2.5), получим:

$$\frac{\partial u_k}{\partial t} = \frac{\partial^2}{\partial t \partial x_k} \quad \text{или} \quad \frac{\partial}{\partial t} \left[u_k - \frac{\partial u}{\partial x_k} \right] = 0. \tag{2.2.7}$$

Поэтому величина $u_k - \frac{\partial u}{\partial x_k}$ не зависит от t = 0 в области G, $u_k = \frac{\partial u}{\partial x_k}$. Поэтому

из (2.2.7) следует что при всех t в области G

$$u_k = \frac{\partial u}{\partial x_k}.$$

Подставляя $u_0 = \frac{\partial u}{\partial t}$ и $u_k = \frac{\partial u}{\partial x_k}$ в (2.2.5) мы получаем, что уравнение (2.2.3)

удовлетворяют всюду в G. Итак, мы показали, что система (2.2.5) эквивалентна уравнению (2.2.3), если при t=0

$$u_k = \frac{\partial u}{\partial x_k}.$$

При произвольных же начальных условиях система (2.2.5) в некотором смысле богаче решениями, чем уравнение (2.2.3), так как произвольные

начальные условия для решения u, u_0, u_1, \dots, u_n не обязательно должны быть связаны соотношениями $u_k = \frac{\partial u}{\partial x}$.

Таким образом, задача Коши для линейного уравнения второго порядка (2.2.3) свелась к задаче Коши для линейной системы (2.2.5) первого порядка. Совершенно так же можно любую систему вида (2.2.1) свести к системе уравнений первого порядка, разрешенной относительно производных по t от всех неизвестных функций. Поэтому мы докажем теорему Ковалевской для произвольной линейной системы, которую можно записать в виде (2.2.1), если мы докажем ее для произвольной линейной системы первого порядка вида

$$\frac{\partial u_i}{\partial t} = \sum_{i=1}^{N} \sum_{k=1}^{n} a_{ij}^{(k)} \frac{\partial u_j}{\partial x_k} + \sum_{i=1}^{N} b_{ij} u_j + c_i$$
(2.2.9)

с аналитическими коэффициентами при произвольных аналитических начальных условиях

$$u_i(0, x) = \varphi_i(x), i = \overline{1, N}.$$
 (2.2.10)

Случай любых аналитических функций φ_i легко сводится к случаю, когда все $\varphi_i(x) \equiv 0$.

Для этого вместо прежних неизвестных функций $u_i(t,x)$ мы введем новые неизвестные функции

$$v_i(t, x) = u_i(t, x) - \varphi_i(x).$$
 (2.2.11)

Функции v_i будут удовлетворять системе уравнений

$$\frac{\partial v_i}{\partial t} = \sum_{i=1}^N \sum_{k=1}^n a_{ij}^{(k)} \frac{\partial v_j}{\partial x_k} + \sum_{i=1}^N b_{ij} v_j + \left(C_i + \sum_{i=1}^N \sum_{k=1}^n a_{ij}^{(k)} \frac{\partial \varphi_j}{\partial x_k} + \sum_{i=1}^N b_{ij} \varphi_j \right), \tag{2.2.12}$$

вполне аналогичной системе (2.2.9); и начальным условиям

$$v_i(0, x) \equiv 0.$$
 (2.2.13)

Доказав существование решения задачи Коши для системы (2.2.12) с нулевыми начальными условиями, мы докажем тем самым и разрешимость исходной задачи. Для сокращения записи мы будем считать, что уже исходные функции $u_i(t,x)$ удовлетворяют начальным условиям

$$u_i(0,x) \equiv 0, \quad i = \overline{1,N}.$$
 (2.2.14)

Докажем сначала единственность решения задачи Коши для системы (2.2.9) при начальных условиях (2.2.14) в классе аналитических функций вблизи точки 0 с координатами $t = 0, x_1 = 0, ..., x_n = 0$, т.е. докажем, что ни в какой окрестности этой точки не существует двух различных аналитических решений системы (2.2.9) удовлетворяющих при t = 0 одним и тем же начальным условиям (2.2.14). Аналитические в окрестности начала

координат функции $u_i(t,x)$ вблизи начала разлагаются в степенные ряды по t,x_1,\ldots,x_n .

Коэффициент $a^i_{k_0k_1...k_n}$ при $t^{k_0}x_1^{k_1}...x_n^{k_n}$ в разложении функции $u_i(t,x_1,...x_n)$ равен

$$a_{k_0k_1...k_n}^i = \frac{1}{k_0!k_1!\cdots k_n!} \left(\frac{\partial^{k_0+k_1+...k_nu_i}}{\partial t^{k_0}\partial x_1^{k_1}\dots \partial x_n^{k_n}} \right).$$

Мы докажем единственность решения задачи Коши, если покажем, что начальные условия (2.2.14) определяют единственным образом коэффициенты разложения функций u_i , удовлетворяющих системе (2.2.9) в степенные ряды по $t, x_1, ..., x_n$ или, что все равно, если мы покажем, что эти условия единственным образом определяют значения всех производных от u_i в точке 0 с координатами $t = x_1 = ... = x_n = 0$.

Будем определять эти производные последовательно. Начальные условия определяют единственным образом значения в точке 0 всех производных вида

$$\left(\frac{\partial^k u_i}{\partial x_1^{k_1} \dots \partial x_n^{k_n}}\right) = 0. \tag{2.2.15}$$

Все эти производные равны нулю, так как тождества (2.2.14) можно дифференцировать по $x_1,...,x_n$. Допустим, что решение задачи Коши существует. Подставим вместо u_j в уравнения (2.2.9) функции, составляющие это решение. Продифференцируем все полученные тождества k_1 раз по x_1,k_2 раз по $x_2,...,k_n$ раз по x_n . Тогда в левых частях получатся производные вида

$$\frac{\partial^{k+1} u_i}{\partial t \partial x_1^{k_1} \dots \partial x_n^{k_n}},\tag{2.2.16}$$

а в правых — производные по $x_1,...x_n$ от неизвестных функций и коэффициентов уравнения, т.е. величины, однозначно определенные в точке 0 уравнениями и начальными условиями. Полученные тождества определяют в точке 0 значения производных вида (2.2.16). (Одно дифференцирования по t).

Продифференцируем каждое из тождеств (2.2.9) один раз по t,k1 раз по t2,...,t6 раз по t6 года в правых частях получатся выражения, составленные из производных от t7 и вида (2.2.16) и (2.2.15) и производных от коэффициентов t8 и t9 года (2.2.16) и (2.2.15) и производных от коэффициентов t9 года (2.2.16) и (2.2.15) и производных от коэффициентов t9 года (2.2.16) и (2.2.15) и производных от коэффициентов t9 года (2.2.16) и (2.2.15) и производных от

В левых же частях получатся производные вида

$$\frac{\partial^{k+2} u_i}{\partial t^2 \partial x_1^{k_1} \dots \partial x_n^{k_n}} \tag{2.2.17}$$

(два дифференцирования по t). Так как мы уже доказали, что производные вида (2.2.16) и (2.2.15) единственным образом определяют в точке O уравнения (2.2.9) и начальными условиями (2.2.14), то отсюда следует, что единственным образом определяются и все производные (2.2.17) в точке O.

Продолжая этот процесс, мы найдем, таким образом, что все производные от u_i определяются в точке O единственным образом уравнениями (2.2.9) и начальными условиями (2.2.14). Но значения всех производных аналитической функции $u_i(t,x)$ в фиксированной точке Oоднозначно определяют значения коэффициентов степенного ряда по $t, x_1, ..., x_n$, в который эта функция разлагается в окрестности O, и потому вполне определяют значения самой этой функции в некоторой окрестности точки О. Таким образом два аналитических решения системы (2.2.9) с одними и теми же начальными условиями (2.2.14) обязательно совпадают в окрестности начала координат. Тем самым доказана единственность решения задачи Коши для системы (2.2.9) в классе аналитических функций.

Для доказательства сходимости степенных рядов, полученных нами для функций u_i , воспользуемся методом мажорант.

Пусть

$$\varphi(t, x_1, \dots, x_n) = \sum_{k_0, k_1, \dots, k_n} t^{k_0} x_1^{k_1} \dots x_n^{k_n}.$$
(2.2.18)

Ряд в правой части абсолютно сходится в некоторой точке

$$t = a_0, x_1 = a_1, ..., x_n = a_n$$
, где все $|a_i| > 0$.

Тогда существует такое положительное M, что при всех целых неотрицательных k_0, k_1, \ldots, k_n

$$|c_{k_0k_1...k_n}a_0^{k_0}a_1^{k_1}...a_n^{k_n}| \leq M.$$

Следовательно, при всех $k_0, k_1, ..., k_n$

$$|c_{k_0k_1...k_n}| \leqslant \frac{M}{|a_0|^{k_0}|a_1|^{k_1}...|a_n|^{k_n}}.$$

Поэтому функция

$$S = \frac{M}{(1 - \frac{t}{|a_0|})(1 - \frac{x_1}{|a_1|})\dots(1 - \frac{x_n}{|a_n|})} = M \left[\sum_{k_0=0}^{\infty} \left(\frac{t}{|a_0|}\right)^{k_0} \sum_{k_1=0}^{\infty} \left(\frac{x_1}{|a_1|}\right)^{k_1} \dots \sum_{k_n=0}^{\infty} \left(\frac{x_n}{|a_n|}\right)^{k_n} \right] =$$

$$= \sum_{k_0, k_1, \dots, k_n} \frac{M}{|a_0|^{k_0} |a_1|^{k_1} \dots |a_n|^{k_n}} t^{k_0} x_1^{k_1} \dots x_n^{k_n}$$
(2.2.19)

является мажорантой для функции $\varphi(t,x)$.

Можно указать и другой прием для построения мажорантного ряда. Так, например, для функции $\varphi(t, x_1, ..., x_n)$, представленной рядом (2.2.18), мажорантой будет также следующая функция:

$$\frac{M}{1-\frac{t+x_1+\ldots+x_n}{a}},$$

где $a = min(|a_0|, |a_1|, ..., |a_n|), a_i \neq 0, i = \overline{1,n}$ и $(a_0, a_1, ..., a_n)$ — некоторая точка сходимости ряда (2.2.18).

Действительно, при $|t|+|x_1|+...+|x_n|< a$ эта функция разлагается в ряд

$$M\sum_{k=0}^{\infty} \left(\frac{t+x_1+\ldots+x_n}{a}\right)^k = M\sum_{k=0}^{\infty} \frac{1}{a^k} \sum_{k_0+k_1+\ldots+k_n=k} \frac{k!}{k_0!k_1!\ldots k_n!} t^{k_0} x_1^{k_1} \ldots x_n^{k_n}$$
(2.2.20)

но

НО

$$\frac{(k_0 + k_1 + \ldots + k_n)!}{k_0 ! k_1 ! \ldots k_n !} \geqslant 1; \frac{1}{a^k} \geqslant \frac{1}{|a_0|^{k_0} |a_1|^{k_1} \ldots |a_n|^{k_n}},$$

т.е. коэффициенты не меньше соответствующих коэффициентов ряда (2.219). Таким образом, функция (2.2.20) также является мажорантой для (2.2.18). Точно также для функции $\varphi(t,x)$ будет мажорантой функция

$$\frac{M}{1 - \frac{t}{\alpha} + x_1 + \dots + x_n} = M \sum_{k=0}^{\infty} \frac{\left(\frac{t}{\alpha} + x_1 + \dots + x_n\right)^k}{a^k},$$
(2.2.21)

где a имеет прежнее значение, а $0 < \alpha < 1$.

Если здесь разложить опять $(\frac{t}{\alpha} + x_1 + ... + x_n)^k$ по степени $t, x_1, ..., x_n$, то получится ряд, у которого коэффициенты положительны и больше соответствующих коэффициентов разложения по степеням $t, x_1, ..., x_n$ функции (2.2.20), так как коэффициенты первого из этих рядов получаются из соответствующих коэффициентов второго ряда умножением на $(\frac{1}{\alpha})^{k_0}$, где $0 < \alpha < 1$.

Переходим теперь к доказательству существования решения задачи Коши для системы (2.2.9) при начальных условиях (2.2.14); назовем ее "задача 1", а систему (2.2.9) будем называть "системой 1".

Допустим, что мы как-то мажорировали коэффициенты системы и начальные данные Коши. Получим новую систему и новую задачу Коши (назовем их соответственно "системой II", "задача II").

Покажем, что аналитическое решение, "задача II" будет мажорантой для аналитического решения "задачи I". Если решение "задачи I" представляется в окрестности начала степенным рядом

$$u_i = \sum a_{k_0 k_1 \dots k_n}^{(i)} t^{k_0} x_1^{k_1} \dots x_n^{k_n}, \qquad (2.2.22)$$

а решение «задачи II» рядом

$$U_{i} = \sum A_{k_{0}k_{1}...k_{n}}^{(i)} t^{k_{0}} x_{1}^{k_{1}} ... x_{n}^{k_{n}},$$
(2.2.24)

то нам надо доказать неравенства между коэффициентами

$$|a_{k_0k_1...k_n}^{(i)}| \leq A_{k_0k_1...k_n}^{(i)}. \tag{2.2.24}$$

Для случая $k_0=0$ эти неравенства непосредственно вытекают из того, что начальные данные "задачи II" мажорируют начальные данные "задачи I". Для случая $k_0>0$ коэффициенты $a_{k_0k_1...k_n}^{(i)}$, соответственно $A_{k_0k_1...k_n}^{(i)}$, получаются при помощи сложения и умножения и коэффициентов $a^{(i)}$ соответственно $A^{(i)}$, имеющих меньший индекс k_0 , и значений в точке O коэффициентов системы I, соответственно II, и их производных. Поэтому легко убедиться, что если для $k_0 < k$ справедливы неравенства (2.2.24), то они справедливы и для $k_0 = k$. Значит, они верны для всех коэффициентов разложений (2.2.22) и (2.2.23).

Следовательно, из разрешимости "задачи II" (сходимости ряда (2.2.22) следует разрешимость "задачи II" (сходимость ряда (2.2.23). Но "задача II" может быть построена с большой степенью произвола, так как мы можем произвольно выбирать мажоранты для коэффициентов и начальных данных "задачи I". Выберем "задачу II" настолько простой, чтобы ее решение можно было просто найти. Для этого подберем числа M > 0 и a > 0 так, чтобы функция

$$\frac{M}{1 - \frac{t}{\alpha} + x_1 + \ldots + x_n}$$

при $0 < \alpha < 1$ была мажорантой для всех коэффициентов системы, кроме свободных членов. Для этих же последних выберем общую мажоранту вида

$$\frac{M_1}{\frac{t}{\alpha} + x_1 + \ldots + x_n}.$$

$$1 - \frac{a}{a}$$

Это можно сделать, так как мажоранта такого вида существует у каждого коэффициента и для построения общей мажоранты надо числам M и M_1 придать наибольшее, а числу a — наименьшее из всех их значений, соответствующих различным коэффициентам. Выбрав таким образом числа M, M_1 и a, напишем мажорирующую систему в виде

$$\frac{\partial U_i}{\partial t} = \frac{M}{1 - \frac{\frac{t}{\alpha} + x_1 + \dots + x_n}{a}} \left[\sum_{j=1}^N \sum_{k=1}^n \frac{\partial U_j}{\partial x_k} + \sum_{j=1}^N U_j + m \right], \tag{2.2.25}$$

где число $\alpha, 0 < \alpha < 1$ выберем позже, а $m = \frac{M_1}{M}$.

Не фиксируя пока начальных данных, будем искать решение системы в виде

$$U_1(t,x) \equiv U_2(t,x) \equiv \dots \equiv U_N(t,x) \equiv U(t,x) = U\left(\frac{t}{\alpha} + x_1 + \dots + x_n\right) = U(z),$$

где $z = \frac{t}{\alpha} + x_1 + ... + x_n$. Подставив предполагаемое решение в систему (2.2.25),

получим, что функция U(z) должна удовлетворять уравнению

$$\frac{1}{\alpha}\frac{dU}{dz} = A(z)\left(Nn\frac{dU}{dz} + NU + m\right),\tag{2.2.26}$$

где $A(z) = \frac{M}{1 - \frac{z}{a}}$. Это уравнение с разделяющимися переменными можно

записать в виде

$$\frac{dU}{\frac{N}{m}U+1} = \frac{mA(z)dz}{\frac{1}{\alpha} - NnA(z)} = B(z)dz.$$

Выберем теперь положительное число α настолько малым чтобы в некоторой окрестности точки z=0 было

$$\frac{1}{\alpha} - NnA(z) > 0. \tag{2.2.27}$$

Тогда B(z) будет в этой окрестности аналитической функцией. Покажем, что частное решение уравнения (2.2.26)

$$U(z) = \frac{e^{\frac{N}{m}\int_{0}^{z}B(\xi)d\xi}}{N}m$$

дает нам искомую мажоранту для решения "задачи І".

Так как функции $U_i(t,x) = U\left(\frac{t}{\alpha} + x_1 + \ldots + x_n\right)$ удовлетворяют системе (2.2.25), мажорирующей исходную систему, то для доказательства этого утверждения достаточно убедится, что U(z) при t=0 разлагается в ряд по x_1, \ldots, x_n с положительными коэффициентами, т.е. является мажорантой тождественного нуля (начальных данных "задачи I").

Действительно, $A(z) = \frac{M}{1 - \frac{z}{\alpha}}$ есть функция с неотрицательными

коэффициентами по z. Следовательно,

$$B(z) = \frac{m\alpha A(z)}{1 - \alpha NnA(z)} = m\alpha A(z)[1 + \alpha NnA(z) + \alpha^2 N^2 n^2 A^2(z) + \dots]$$

тоже имеет неотрицательные коэффициенты разложения по степеням z. Отсюда

$$C(z) = \frac{N}{m} \int_{0}^{z} B(z) dz, e^{C(z)} - 1 = C(z) + \frac{C^{2}(z)}{2!} + \dots,$$

U(z) также обладают этим свойством. Поэтому и коэффициенты разложения по степеням $x_1,...,x_n$ также неотрицательные, т.е. $U(0,x_1,...,x_n)$ действительно является мажорантой нуля. Значит, функции $U_i(t,x_1,...,x_n) = U(\frac{t}{\alpha} + x_1 + ... + x_n)$ являются решением некоторой "задачи II" {. Аналитичность этого решения вытекает из того, что U(z), как показано выше, разлагается в ряд по степеням $t,x_1,...,x_n$. А отсюда, как было указано выше, следует сходимость степенных рядов (2.2.22), представляющих решение исходной задачи.

Этим доказательство теоремы Ковалевской для линейных систем заканчивается.

В случае нелинейной системы Ковалевской приводится к квазилинейной системе уравнений первого порядка.

2.2.2. Пример Ковалевской

Для систем, не имеющих вида (2.2.1) теорема Ковалевской, вообще говоря, неверна, как показывает следующий пример, принадлежащий Ковалевской.

Пример 2.2.1. (С.В. Ковалевская). Рассмотрим уравнение

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \tag{2.2.28}$$

с начальным условием

$$u(0,x) = \frac{1}{1-x}, |x| < 1.$$
 (2.2.29)

Легко видеть, что аналитическое решение u(t,x) задачи (2.2.28), (2.2.29), если оно существует, в окрестности начала координат должно представляться рядом

$$\sum_{n=0}^{\infty} \frac{(2n)!}{n!} \frac{t^n}{(1-x)^{2n+1}};$$

однако этот ряд расходится в каждой точке при $t \neq 0$.

2.3. Граничные условия

Краевая задача для уравнения (2.1.3) эллиптического типа состоит в нахождении функции u(x) класса $C^2(G)\bigcap C^1(\overline{G})$, удовлетворяющей в области G уравнению (2.1.3) и граничному условию на S вида

$$\alpha u + \beta \frac{\partial u}{\partial k} \Big|_{S} = v, \tag{2.3.1}$$

где α, β , и v — заданные кусочно-непрерывные функции на S, причем $\alpha(x)\geqslant 0, \beta(x)\geqslant 0, \alpha(x)+\beta(x)>0, x\in S.$

Выделяют следующие типы граничных условий (2.3.1):

1. Граничное условие I рода ($\alpha = 1, \beta = 0$)

$$u|_{S} = u_{0}. (2.3.2)$$

2. Граничное условие II рода ($\alpha = 0, \beta = 1$)

$$\left. \frac{\partial u}{\partial n} \right|_{S} = u_{1},\tag{2.3.3}$$

3. Граничное условие III рода ($\beta = 1, \alpha \geqslant 0$)

$$\left. \frac{\partial u}{\partial k} + \alpha u \right|_{S} = u_{2}. \tag{2.3.4}$$

Соответствующие краевые задачи называются краевыми задачами I, II и III рода.

Для уравнений Лапласа и Пуассона краевая задача І рода

$$\Delta u = -f, \qquad u|_{S} = u_0 \tag{2.3.5}$$

называется задачей Дирихле;

краевая задача II рода

$$\Delta u = -f, \quad \frac{\partial u}{\partial n} \bigg|_{S} = u_{1} \tag{2.3.6}$$

называется задачей Неймана.

Аналогично ставятся краевые задачи для уравнения (2.1.3) и во внешности ограничений области G (внешние краевые задачи). Отличие состоит в том, что, помимо граничного условия (2.3.1) на S, задаются еще условия на бесконечности. Такими условиями, например, могут быть: условия излучения Зоммерфельда

$$v(x) = O(|x|^{-1}), \frac{\partial v(x)}{\partial |x|} - ikv(x) = o(|x|^{-1})$$
 при $|x| \to \infty$ (2.3.7)

для уравнения Гельмгольца (или Шредингера)

$$\Delta u + k^2 u = -f(x), \quad k^2 = \frac{w^2}{a^2},$$
 (2.3.8)

где

$$v(x) = f\left(\frac{x}{|x|}\right) \frac{e^{ik|x|}}{|x|} + o(|x|^{-1});$$
 (2.3.9)

$$u(x) = O(1)$$
 или $u(x) = o(1), |x| \to \infty$ (2.3.10)

– для уравнения Пуассона;

принадлежность ψ к $L_2(\mathbb{R}^3)$ для собственных функций уравнения Шредингера

$$-\frac{\hbar}{2m_0}\Delta\psi + V\psi = E\psi$$

где $\hbar = 1,054 \cdot 10^{-27}$ эрг · сек — постоянная Планка и другие.

2.4. Смешанная задача

Для уравнения колебаний (2.1.1) гиперболического типа смешанная задача ставится следующим образом: найти функцию u(x,t) класса $C^2(U_T) \cap C^1(\overline{U}_T)$, удовлетворяющую уравнению (2.1.1) в цилиндре \mathcal{U}_T , начальным условиям

$$u|_{t=0} = u_0(x), \frac{\partial u}{\partial t}\Big|_{t=0} = u_1(x)$$
 (2.4.1)

при $t=0, x\in \bar{G}$ (на нижнем основании цилиндра \mathcal{U}_T) и граничному условию

$$\alpha u + \beta \frac{\partial u}{\partial n} \bigg|_{s} = v \tag{2.3.1'}$$

(на боковой поверхности цилиндра U_{T}).

При этом необходимо чтобы были выполнены условия гладкости

$$F \in C(U_T), u_0 \in C^1(\overline{G}), u_1 \in C(\overline{G}),$$

v — кусочно-непрерывна на $S \times [0,T]$ и условия согласованности

$$\left. \alpha u_0 + \beta \frac{\partial u_0}{\partial n} \right|_{S} = v \left| t = 0, \alpha u_1 + \beta \frac{\partial u_1}{\partial n} = \frac{\partial v}{\partial t} \right|_{t=0}. \tag{2.4.2}$$

(Второе из равенств (2.4.2) имеет смысл, если решение u(x,t) достаточно гладко вплоть до нижнего основания U_T). Аналогично для уравнения диффузии (2.1.2) параболического типа смешанная задача ставится так: найти функцию u(x,t) класса

$$C^2(U_T) \cap C(\overline{U}_T), grad_x u \in C(\overline{U}_T),$$

удовлетворяющую уравнению (2.1.2) U_{T} , начальному условию

$$u|_{t=0} = u_0(x) (2.4.3)$$

при $t = 0, x \in \overline{G}$ (на нижнем основании цилиндра \mathcal{U}_T и граничному условию (2.3.1').