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НЕОДНОРОДНЫЕ СИСТЕМЫ ЛИНЕЙНЫХ
ДИФФЕРЕНЦИАЛЬНЫХ ДИФФЕРЕНЦИАЛЬНЫХ

УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ
УРАВНЕНИЙ. ОСНОВНЫЕ ПОНЯТИЯ

Рассмотрим систему обыкновенных дифференциальных уравнений
n-го порядка

Y ′ = F (Y ) (1)

или
dY

dx
= F (Y ), (2)

где

Y =


y1
y2
.
.
.
yn

 , F (Y ) =


f1(y1, y2, ..., yn)
f2(y1, y2, ..., yn)

.

.

.
fn(y1, y2, ..., yn)

 (3)

Задачей Коши для этой системы называется следующая задача: най-
ти такое решение Y = Y (x) системы (1), что Y (x0) = Y0 , где Y0−
некоторый постоянный вектор.

Вектор-функция Y = Y (x,C) , зависящая от произвольного вектора
C, называется общим решением системы (0.1), если:

a)при любом векторе C вектор-функция Y = Y (x,C) является ре-
шением;

b)какова бы ни была начальная данные (x0, Y0, существует такой
вектор C0, что Y (x0, C0) = Y0 .

Рассмотрим систему обыкновенных дифференциальных уравнений
n-го порядка (1), и пусть вектор-функция Y = Y (x)- решение системы,
определҷнное на промежутке [a, b]. Множество точек Y (x), x ∈ [a, b] есть
кривая в пространстве Rn. Эту кривую называют фазовой траекторией
системы (или просто траекторией, или фазовой кривой),а пространство
Rn , в котором расположены фазовые траектории, называют фазовым
пространством системы.

Интегральная кривая системы определяется уравнением Y =
Y (x), x ∈ [a, b] и изображается в (n + 1)− мерном пространстве. Фа-
зовая траектория является проекцией интегральной кривой на фазовое
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пространство..... 4.3.Существование и единственность решения задачи
Коши

Рассмотрим систему обыкновенных дифференциальных уравнений
n-го порядка (1).

. Пусть задана следующая задача Коши для этой системы

Y ′ = F (Y ), Y (x0) = Y0 (4)

Справедлива следующая теорема о существовании и единственности
решения задачи Коши.

Теорема 1. Пусть в области D из Rn непрерывны все компоненты
вектора правой части F (Y ) и их частные производные по ∂fi

∂yj
. Тогда,

какова бы ни была начальная точка (x0, Y0) = (x0, y
0
1 , y

0
2 , ..., y

0
n) ∈ D,

существует такой отрезок (x0 = h;x0 + h), что задача Коши (4) имеет
единственное решение Y = Y (x)..

Важно понимать, что эта теорема имеет локальный характер: суще-
ствование решения Y = Y (x) гарантируется лишь в достаточно малой
окрестности точки x0. Важно также понимать, что теорема содержит
только достаточные условия существования и единственности решения
? при нарушении условий теоремы задача Коши может иметь или не
иметь решений, может иметь несколько решений.

ЛИНЕЙНЫt СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ
УРАВНЕНИЙ

Следующая система дифференциальных уравнений называется линей-
ной системой:

ẏ1 = a11(x)y1 + a12(x)y2 + . . .+ a1n(x)yn + f1(x),

ẏ2 = a21(x)y1 + a22(x)y2 + . . .+ a2n(x)yn + f2(x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ẏn = an1(x)y1 + an2(x)y2 + . . .+ ann(x)yn + fn(x).

(5)

При описании линейных систем дифференциальных уравнений удобнее
пользоваться векторной (матричной) формой записи.

Введем следующие обозначия
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A(x) =


a11(x) a12(x) . . . a1n(x)
a21(x) a22(x) . . . a2n(x)
.
.
.

an1(x) an2(x) . . . ann(x)

 , f(x) =


f1(x)
f2(x)
.
.
.

fn(x)

 . (6)

Теперь систему (5) можем написать в следующем виде:

Y ′ = A(x)Y + f(x) (7)

Теорема 2. Пусть aij(x) и fi(x) непрерывны на отрезке [a, b]. Тогда
какова бы ни была начальная точка (x0, Y0) из Rn+1, задача Коши

Y ′ = A(x)Y + f(x), Y (x0) = Y0 (8)

имеет единственное на [a, b], решение Y = Y (x).
Важно отметить, что для линейной системы дифференциальных

уравнений разрешимость задачи Коши глобальная: решение существует
всюду, где непрерывны коэффициенты и неоднородность системы.

Нетрудно показать, что для решений линейных систем дифферен-
циальных уравнений

Y ′ = A(x)Y + f(x) (9)

Y ′ = A(x)Y (10)

справедливо:
1) если Y1 и Y2 два решения однородной системы, то при произволь-

ных значениях постоянных C1 и C2 функция Y = C1Y1 +C2Y2 является
решением этой системы;

2) если Y1 и Y2 два решения неоднородной системы, то функция
Y = Y1 + Y2 является решением однородной системы;

3) однородная система дифференциальных уравнений (10) имеет
тривиальное (нулевое) решение Y = 0. Это тривиальное решение на-
зывают точкой покоя системы или положением равновесия системы.
При изучении систем линейных дифференциальных уравнений важную
роль играют свойства линейной зависимости и линейной независимости
решений и связанный с этими свойствами определитель Вронского.
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Рассмотрим линейную однородную систему обыкновенных диффе-
ренциальных уравнений вида

Y ′ = A(x)Y (11)

Матрица Φ , столбцами которой являются n линейно независимые на
[a, b] решения

Y1, Y2, ..., Yn

однородной линейной системы называется фундаментальной матрицей
решений системы, определитель этой матрицы называется определите-
лем Вронского.

Фундаментальная матрица решений системы имеет вид

Φ(x) =


y11(x) y12(x) . . . y1n(x)
y21(x) y22(x) . . . y2n(x)
.
.
.

yn1(x) yn2(x) . . . ynn(x)

 , (12)

У любой однородной линейной системы обыкновенных дифферен-
циальных уравнений существует фундаментальная матрица решений.
Известно, что функции решения

Y1, Y2, ..., Yn

линейно независимы тогда и только тогда когда соответствующий опре-
делитель Вронского отличен от нуля.

Рассмотрим линейную однородную систему обыкновенных диффе-
ренциальных уравнений n-го порядка (11). Справедлива следующая
теорема о структуре общего решения этой системы.

Теорема 3. Если матрица A(x) непрерывна на [a, b] то общее реше-
ние системы (11) имеет вид

Y (x) = Φ(x)C = C1Y1(x) + C2Y2(x) + ...+ CnYn(x),

где Φ(x)− фундаментальная матрица решений однородной линейной
системы, C−произвольный постоянный вектор-столбец.

НЕОДНОРОДНЫЕ СИСТЕМЫ ОБЫКНОВЕННЫХ
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С
ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ И

СПЕЦИАЛЬНОЙ ПРАВОЙ ЧАСТЬЮ
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Неоднородная система линейных дифференциальных уравне- ний с
постоянными коэффициентами - это система вида

Y ′ = AY + f(x), (13)

где A = (aij) заданная квадратная числовая матрица порядка п, а
f(x)− заданная матрица-столбец, элементами которой являются функ-
ции fi(x), i = 1, 2, ..., n. Для системы (0.13) справедлива следующая тео-
рема.

Теорема 4. Общее решение Yo(x) неоднородной линейной системы
(13) равно сумме общего решения Y00(x) соответствую- щей однородной
системы

Y ′ = A(x)Y (14)

и любого частного решения Y(x) данной неоднородной системы.
Мы знаем как найти общее решение однородной системы.Поэтому

покажем методы нахождения частного решения неоднородной систе-
мы,когда правая часть системы имеет специальный вид.

Рассмотрим систему (13), у которой f(x) имеет "специальный"вид,
а именно:

f(x) =
(
Pm(x)cosβx+Qlsinβx

)
eαx, (15)

где Pm(x)− многочлен m-й степени с векторными коэффициентами, т.е.
Pm(x) = γ0x

m + γ1x
m−1 + ... + γm−1x + γm−, γi заданные числовые

вектор-столбцы ; Ql(x)−Џ многочлен l−й степени того же вида.
Правая часть f(x) вида (15) называется векторным квазимногочле-

ном.
Для нахождения частного решения Y неоднородной системы (13),

правая часть которой f(x) является векторным квазимногочленом,
справедливо утверждение.

Утверждение 1. Частное решение Y системы (13), правая часть
которой имеет вид (15), может быть найдено в виде

Y(x) =
(
Pn1+r(x)cosβx+Qn1+rsinβx

)
eαx, (16)

где n1 = max(m; l), r = 0, если число λ0 = α+ iβ не является собствен-
ным значением матрицы A, и r равно алгебраической кратности λ0, ес-
ли λ0 является собственным значением матрицы ; Pn1+r(x) и Qn1+r(x)−
неизвестные многочлены с векторными коэффициентами степени n1+r,
коэффициенты которых находятся методом неопределенных коэффици-
ентов.



6

Для системы (13) так же, как и для линейного уравнения n-го поряд-
ка, справедлив принцип суперпозиции, который позволяет распростра-
нить предложенный выше метод построения частного решения неод-
нородной системы с постоянными коэффициентами на случай, когда
правая часть f(x) является суммой нескольких разных квазимногочле-
нов.

Утверждение 2 . Пусть дан оператор LY = Y ′ − AY , где A−
квадратная матрица порядка n, и пусть задано уравнение LY = f , где
f = f1 + f2 + ... + fk. Тогда если Yi− решение уравнения LYi = fi,
i = 1, 2, ..., k, то Y = Y1 + Y2 + ... + Yk есть решение уравнения
LY = f = f1 + f2 + ...+ fk.

Пример 1. Найти общее решение неоднородной системы{
y′1 = y2 − 5 cosx,

y′2 = 2y1 + y2.
(17)

Решение. Найдем общее решение соответствующей однородной систе-
мы: {

y′1 = y2,

y′2 = 2y1 + y2.
(18)

Характеристическое уравнение данной системы

det(A− λE) =

∣∣∣∣−λ 1
2 1− λ

∣∣∣∣ = λ2 − λ− 2 = 0

имеет корни λ1 = −1, λ2 = 2. Найдем собственные векторы отвечающие
собственным значениям λ1 и λ2 соответственно. Координаты векторов
h1 и h2 находятся, соответственно, из систем:(

1 1
2 2

)(
h11
h21

)
=

(
0
0

)
;

(
−2 1
2 −1

)(
h12
h22

)
=

(
0
0

)
.

Очевидно, что в качестве h1 и h2 можно взять векторы

h1 =

(
1
−1

)
; h2 =

(
1
2

)
.

Тогда общее решение однородной системы (18) имеет вид

yoo =

(
y1
y2

)
oo

= C1

(
1
−1

)
e−x + C2

(
1
2

)
e2x.
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Частное решение неоднородной системы (17) будем искать методом
неопределенных коэффициентов. Правая часть f(x) системы (17) имеет
вид

f(x) =

(
−5 cosx

0

)
=

(
−5
0

)
cosx,

т.е. является квазиполиномом (n=0, α=0, β = 1), λ0 = α + iβ = i не
является корнем характеристического уравнения, следовательно, r = 0.
Тогда согласно утверждению 1 частное решение системы (17) следует
искать в виде

y =

(
y1
y2

)
=

(
A
B

)
cosx+

(
M
N

)
sinx.

Подставив это выражение в (17) и приравняв коэффициенты в полу-
ченных равенствах при cosx и sinx, получим для определения коэффи-
циентов систему 

−A = N ;

M = B − 5;

−B = 2M +N ;

N = 2A+B.

Отсюда следует, что A = 1, B = 3, M = 2, N = 1. Следовательно,

y =

(
−1
3

)
cosx+

(
−2
1

)
sinx.

Тогда общее решение системы (17) имеет вид

yo = C1

(
1
−1

)
e−x + C2

(
1
2

)
e2x +

(
−1
3

)
cosx+

(
−2
1

)
sinx.

Пример 2. Найти общее решение неоднородной системы{
y′1 = y1 − y2 + 1;

y′2 = y1 + 3y2 + x+ e2x.
(19)

Решение. Общее решение соответствующей однородной системы имеет
вид

yoo =

(
y1
y2

)
oo

= C1

(
−1
1

)
e2x + C2

(
−1

1 + x

)
e2x.
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Чтобы найти общее решение системы (19), достаточно в силу теоре-
мы 1 найти какое-нибудь частное решение системы (19). Будем искать
частное решение неоднородной системы (19) методом неопределенных
коэффициентов (методом Лагранжа). Поскольку в правой части систе-
мы (19) есть слагаемые вида (15) с показателем λ0 = 0 6= 2 и слагаемые
вида (15) с показателем λ0 = 2, то частное решение неоднородной си-
стемы будет состоять из двух частей:

y = y1 + y2,

где y1 частное решение системы{
y′1 = y1 − y2 + 1;

y′2 = y1 + 3y2 + x,
(20)

a y2 частное решение системы{
y′1 = y1 − y2;

y′2 = y1 + 3y2 + e2x,
(21)

y1 и y2 ищем, соответственно, в виде

y1 = γ0 + γ1x =

(
A
B

)
+

(
C
D

)
x;

y2 = (γ0 + γ1x+ γ2x
2)e2x =

((
K
L

)
+

(
M
N

)
x+

(
F
H

)
x2

)
e2x.

Подставив эти выражения y1 и y2 соответственно, в (34) и (21) и при-
равняв коэффициенты в полученных равенствах при x0, x, x2, получим:

A = −1, B =
1

4
, C = −1

4
, D = −1

4
, K = −1, L = 0, M = 1, N = 0,

F = −1

2
, H =

1

2
. Следовательно, общее решение системы (33) имеет

вид

y = C1

(
−1
1

)
e2x+C2

(
−1

1 + x

)
e2x+

(
−1
1/4

)
−1

4

(
1
1

)
x+

((
−1
0

)
+

(
1
0

)
x+

1

2

(
−1
1

)
x2

)
e2x.
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РЕШЕНИЕ СИСТЕМЫ НЕОДНОРОДНЫХ УРАВНЕНИЙ
МЕТОДОМ ВАРИАЦИИ.

Решение неоднородной системы :

Y ′ = A(x)Y + f(x), (22)

Можно искать в следующем виде:

Y (x) = C1Y1 + C2Y2 + ...+ CnYn (23)

Y1, Y2, ..., Yn является фундаментальной системой решений однородной
системы уравнений

Подставим выражение в исходное уравнение, предполагая при этом,
что C1C2, ..., Cn являются неизвестными функциями от x.Получим мат-
ричное равенство.

n∑
i=1

(C ′iYi + CiY
′
i ) =

n∑
i=1

CiAYi + f(x) (24)

Так как
n∑
i=1

CiY
′
i =

n∑
i=1

CiAYi (25)

то последнее равенство можно записать в следующем виде.

n∑
i=1

C ′iYi = f(x) (26)

Пример 3. Найти общее решение неоднородной системы{
y′1 = −y1 + 2y2;

y′2 = −3y1 + 4y2 + e3x

e2x+1 .
(27)

Эта система в матричной форме будет в следующем виде:

Y ′ = A(x)Y + f(x) (28)

A(x) =

(
−1 2
−3 4

)
, f(x) =

(
0
e3x

e2x+1

)
. (29)
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Решаем однородную систему,{
y′1 = −y1 + 2y2;

y′2 = −3y1 + 4y2.
(30)

Для этого находим собственные значения матрицы λ1 = 2, λ2 = 1. И
собственные векторы

ξ1 =

(
2
3

)
.ξ2 =

(
1
1

)
. (31)

Теперь напишем общее решение однородной системы.

Y = C1e
2xξ1 + C2e

xξ2. (32)

Считая C1, C2 функциями от x получим следующую систему для опре-
деления функций C1, C2{

2C ′1e
2x + C ′2e

x = 0;

3C ′1e
2x + C ′2e

x = e3x

e2x+1 .
(33)

Решая эту систему находим, что{
C1(x) = arctg(ex) + C̃1;

C2(x) = −ln(e2x + 1) + C̃2.
(34)
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