УРАВНЕНИЯ ПАРАБОЛИЧЕСКОГО ТИПА

[bookmark: _GoBack]	Уравнения с частными производными 2-го порядка параболического типа наиболее часто встречаются при изучении процессов теплопроводности и диффузии. Простейшее уравнение параболического типа


обычно называют у р а в н е н и е м  т е п л о п р о в о д н о с т и.

§ 1. Простейшие задачи, приводящие к уравнениям параболического типа. Постановка краевых задач.




1. Линейная задача о распространении тепла. Рассмотрим однородный стержень длины , теплоизолированный с боков и достаточно тонкий, чтобы в любой момент времени температуру во всех точках поперечного сечения можно было считать одинаковой. Если концы стержня поддерживать при постоянных температурах  и , то, как хорошо известно, вдоль стерженя устанавливается линейное распределение температуры  

.                 	                  (1)

При этом от более нагретого к менее нагретому концу стержня будет перетекать тепло. Количество тепло, протекающее через сечение стержня площади  за единицу времени, дается экспериментальной формулой 

,            	            (2)

где  – коэффициент теплопроводности, зависящий от материала стержня.

	Величина теплового потока считается положительной, если тепло течет в сторону возрастания .




	Рассмотрим процесс распространения температуры в стержне. Этот процесс может быть описан функцией , представляющей температуру в сечении  в момент времени . Найдем уравнение, которому должна удовлетворять функция . Для этого сформулируем физические закономерности, определяющие процессы, связанные с распространением тепла.
	2. З а к о н  Ф у р ь е. Если температура тела неравномерна, то в нем возникают тепловые потоки, направленные из мест с более высокой температурой в места с более низкой температурой.


	Количество тепло, протекающее через сечение  за промежуток времени , равно  

,            	                             (3)
где 

            	                              (4)
– плотность теплового потока, равная количеству тепла, протекшего в единицу времени через площадь в 1 см2. Этот закон представляет обобщение формулы (2). Ему можно также придать интегральную форму

,         	                        (5)





где  – количество тепло, протекающее за промежуток времени  через сечение . Если стержень неоднороден, то  является функцией .

	2. Количество тепла, которое необходимо сообщить однородному телу, чтобы повысить его температуру на , равно 

,         	                          (6)




где  – удельная теплоемкость,  – масса тела,  – его плотность,  – объем.
	Если изменение температуры имеет различную величину на разных участках стержня или если стержень неоднороден, то 

.        	                         (7)





	3. Внутри стержня может возникать или поглощаться тепло (например, при прохождении тока, вследствие химических реакций и т. д.). Выделение тепла может быть характеризовано плотностью тепловых источников   в точке  в момент [footnoteRef:1]). В результате действия этих источников на участке стержня  за промежуток времени  выделится количество тепла [1:  Если, например, тепло выделяется в результате прохождения электрического тока силы  по стержню, сопротивление которого на единицу длины равно , то . ] 


        	                           (8)
или в интегральной форме

	,        	                     (9)



где  – количество тепло, выделяющегося на участке стержня  за промежуток времени .


	Уравнение теплопроводности получается при подсчете баланса тепла на некотором отрезке  за некоторый промежуток времени . Применяя закон сохранения энергии и пользуясь формулами (5), (7) и (9), можно написать равенство



,       	                 (10)
которое и представляет уравнение теплопроводности в интегральной форме. 



	Чтобы получить уравнение теплопроводности в дифференциальной форме, предположим, что функция  имеет непрерывные производные  и [footnoteRef:2]. [2:  Требуя дифференцируемости функций , мы, вообще говоря, можем потерять ряд возможных решений, удовлетворяющих интегральному уравнению, но не удовлетворяющих дифференциальному уравнению. Однако в случае уравнений теплопроводности, требуя дифференцируемости решения, мы фактически не теряем возможных решений, так как можно доказать, что если функция удовлетворяет уравнению (10), то она обязательно должна быть дифференцируема.] 

	Пользуясь теоремой о среднем, получаем равенство



,       	                 (11)
которое при помощи теоремы о конечных приращениях можно преобразовать к виду 



,       	                 (12)




где    и   – промежуточные точки интервалов  и .

	Отсюда, после сокращения на произведение , находим:

.  	     (13)




Все эти рассуждения относятся к произвольным промежуткам  и . Переходя к пределу при   и  , получим уравнение

,  	        (14)
называемое у р а в н е н и е м  т е п л о п р о в о д н о с т и.
	Рассмотрим некоторые частные случаи.

	1. Если стержень однороден, то  можно считать постоянными, и уравнение обычно записывает в виде

, 

,


где   – постоянная, называемая коэффициентом температуропроводности. Если источники отсутствуют, т.е.  , то уравнение теплопроводности принимает простой вид: 

. 	                                (14’)
	2. Плотность тепловых источников может зависеть от температуры. В случае теплообмена с окружающей средой, подчиняющегося закону Ньютона, количество тепла, теряемого стержнем[footnoteRef:3], рассчитанное на единицу длины и времени, равно  [3:  Поскольку в нашем приближении не учитывается распределение температуры по сечению, то действие поверхностных источников эквивалентно действию объемных источников тепла.] 


,




где  – температура окружающей среды,  – коэффициент теплообмена. Таким образом, плотность тепловых источников в точке  в момент  равна 

,  	                         (15)

где  – плотность других источников тепла.
	Если стержень однороден, то уравнение теплопроводности с боковым теплообменом имеет следующий вид:

, 

где   – известная функция.  


	3. Коэффициенты  и , как правило, являются медленно меняющимися функциями температуры. Поэтому сделанное выше предположение о постоянстве этих коэффициентов возможно лишь при условии рассмотрения небольших интервалов изменения температуры. Изучение температурных процессов в большом интервале изменения температур приводит к квазилинейному уравнению теплопроводности, которое для неоднородной среды запишется в виде

.
	2. Уравнение диффузии. Если среда неравномерно заполнена газом, то имеет место диффузия его из мест с более высокой концентрацией в места с меньшей концентрацией. Это же явление имеет место и в растворах, если концентрация растворенного вещества в объеме не постоянна. 



	Рассмотрим процесс диффузии в полой трубке или в трубке, заполненной пористой средой, предполагая, что во всякой момент времени концентрация газа (раствора) по сечению трубки одинакова. Тогда процесс диффузии может быть описан функцией , представляющей концентрацию в сечении  в момент времени .


	Согласно з а к о н у  Н е р н с т а масса газа, протекающая через сечение  за промежуток времени , равна

,

,       	                        (16)



где   – коэффициент диффузии,  – площадь сечения  трубки,  – плотность диффузионного потока, равная массе газа, протекающей в единицу времени через единицу площади. 

	По определению концентрации, количество газа в объеме  равно

;


отсюда получаем, что изменение массы газа на участке трубки  при изменении концентрации на  равно

, 

где  – коэффициент пористости[footnoteRef:4]. [4:  Коэффициентом пористости называется отношение объема пор к полному объему , равному в нашем случае .] 



	Составим уравнение баланса массы газа на участке  за промежуток времени :



.
Отсюда, подобно п.1, получим уравнение

,      	                             (17)
являющееся у р а в н е н и е м   д и ф ф у з и и. Оно вполне аналогично уравнению теплопроводности. При выводе этого уравнения мы считали, что в трубке нет источников вещества и диффузия через стенки трубки отсутствует. Учет этих явлений приводит к уравнениям, сходным с уравнениями (14) и (15).
	Если коэффициент диффузии постоянен, то уравнение диффузии принимает вид


,    где    .

	Если коэффициент пористости , а коэффициент диффузии постоянен, то уравнение диффузии имеет вид

.



	3. Распространение тепла в пространстве. Процесс распространение тепла в пространстве может быть характеризован температурой  являющейся функцией  и .
	Если температура непостоянна, то возникает тепловые потоки, направленные от мест с более высокой температурой к местам с более низкой температурой. 




	Пусть  – некоторая площадка в точке  с нормалью . Количество тепла, протекающее через  в единицу времени, согласно закону Фурье, равно 

,




где  коэффициент теплопроводности,   – производная по направлению нормали  к , равная  

.
Закон Фурье часто записывают в форме

,

где  – вектор плотности теплового потока.





	Если среда изотропная, то  есть скаляр. В случае анизотропной среды  есть тензор, а вектор теплового потока  представляет собой произведение тензора  на вектор . Мы будем рассматривать только изотропные среды.
	Перейдем к выводу уравнения теплопроводности в пространстве.




	Рассмотрим некоторый объем , ограниченный поверхностью . Уравнение баланса тепла для объема   за время  имеет вид:



,                  (18)









где   – точка интегрирования,  – элемент объема,  – теплоемкость единицы объема,   – нормальная составляющая плотности теплового потока. Это уравнение выражает закон сохранения тепла в объеме  за время  (левая часть в (18)) обусловлено потоком тепла через граничную поверхность  (первое слагаемое в правой части равенства (18)), а также количеством тепла, выделившимся в объеме  за время  в результате действия тепловых источников.



	Чтобы перейти от интегрального уравнения баланса к дифференциальному уравнению, предположим, что  дважды дифференцируема по  и один раз по  и что производные непрерывны в рассматриваемой области. Тогда можно воспользоваться формулой Остроградского


и преобразовать уравнение баланса к виду



.

(Будем предполагать  непрерывной функцией своих аргументов.)
	Применяя теорему о среднем и теорему о конечных приращениях для функций многих переменных, получим:

,









где    – промежуточные точки на интервале , а   – точки в объеме . Фиксируем некоторую точку  внутри  и будем стягивать  в эту точку, а  стремить к нулю. После сокращения на  и указанного предельного перехода получим:

.


Заменяя   по формуле  , получим дифференциальное уравнение теплопроводности


или  

.
Если среда однородна, то это уравнение обычно записывают в виде

,

где  – коэффициент температуропроводности, или 

,

где    – оператор Лапласа.
	4. Постановка краевых задач. Для выделения единственного решения уравнения теплопроводности необходимо к уравнению присоединить начальные и граничные условия.


	Начальное условие в отличие от уравнения гиперболического типа состоит лишь в задании значений функции  в начальный момент .
	Граничные условия могут быть различны в зависимости от температурного режима на границах. Рассматривают три основных типа граничных условий.

	1. На конце стержня  задана температура

,



где  – функция, заданная в некотором промежутке  , причем  есть промежуток времени, в течение которого изучается процесс.

	2. На конце  задано значение производной

.

К этому условию мы приходим, если задана величина теплового потока , протекающего через торцевое сечение стержня, 

,



откуда  , где  – известная функция, выражающаяся через заданной поток  по формуле

.

	3. На конце  задано линейное соотношение между производной и функцией

.


Это граничное условие соответствует теплообмену по закону Ньютона на поверхности тела с окружающей средой, температура которой  известна. Пользуясь двумя выражениями для теплового потока, вытекающего через сечение , 


и


получаем математическую формулировку третьего граничного условия в виде

,




где  – коэффициент теплообмена,  – некоторая заданная функция. Для конца  стержня  третье граничное условие имеет вид

.


	Граничные условия при  и  могут быть разных типов, так что число различных задач велико.

	Первая краевая задача состоит в отыскании решения  уравнения теплопроводности



  при  ,  ,
удовлетворяющего условиям


,     ;



,  ,   ,



где ,  и   – заданные функция.


	Аналогично ставятся и другие краевые задачи с различными комбинациями краевых условий при  и . Возможны краевые условия более сложного типа, чем те, которые были рассмотрены выше.



	Пусть, например, на конце  стержня помещена сосредоточенная теплоемкость  (например, тело с большой теплопроводностью, вследствие чего температуру по всему объему этого тела можно считать постоянной) и происходит теплообмен с внешней средой по закону Ньютона. Тогда краевое условие при  (выражающее уравнение теплового баланса) будет иметь вид

,




где  – температура внешней среды. Это условие содержит производную  (или , если учесть уравнение ).


	Если среда неоднородна и коэффициенты уравнения являются разрывными функциями, то промежуток , в котором ищется решение задачи, разбивается точками разрыва коэффициентов на несколько частей, внутри которых функция  удовлетворяет уравнению теплопроводности, а на границах – условиям сопряжения. 
	В простейшем случае эти условия заключается в непрерывности температуры и непрерывности теплового потока

, 

,

где  – точки разрыва коэффициентов.
	Кроме названных здесь задач часто встречаются их предельные случаи. Рассмотрим процесс теплопроводности в очень длинном стержне. В течение небольшого промежутка времени влияние температурного режима, заданного на границе, в центральной части стерженя сказывается весьма слабо, и температура на этом участке определяется в основном лишь начальным распределением температуры. В этом случае точный учет длины стержня не имеет значения, так как изменение длины стержня не окажет существенного влияния на температуру интересующего нас участка; в задачах подобного типа обычно считают, что стержень имеет бесконечную длину. Таким образом, ставится задача с начальными условиями (задача Коши) о распределении температуры на бесконечной прямой:


	найти решение уравнения теплопроводности в области    и  , удовлетворяющее условию


    (), 

где  – заданная функция.

	Аналогично, если участок стержня, температура которого нас интересует, находится вблизи одного конца и далеко от другого, то в этом случае температура практически определяется температурным режимом близкого конца и начальными условиями. В задачах подобного типа обычно считают, что стержень полубесконечен, и координата, отсчитываемая от конца, меняется в пределах . Приведем в качестве примера формулировку первой краевой задачи для полубесконечного стержня:


	найти решение уравнения теплопроводности в области    и  , удовлетворяющее условиям

     


где  и  – заданная функция.
	Приведенные выше задачи представляют собой предельный случай (вырождение) основных краевых задач. Возможны предельные случаи основной задачи и другого типа, когда пренебрегают точным учетом начальных условий. Влияние начальных условий при распространении температуры по стержню ослабевает с течением времени. Если интересующий нас момент достаточно удален от начального, то температура стержня практически определяется граничными условиями, так как изменение начальных условий не изменило бы температурного состояния стержня в пределах точности наблюдения. В этом случае практически можно считать, что опыт продолжался бесконечно долго, и начальные условия тем самым отпадают.


	Таким образом, мы приходим к краевым задачам без начальных условий, когда ищется решение уравнения теплопроводности для  и , удовлетворяющее условиям

     


где  и  – заданная функция.
	В зависимости от характера граничного режима возможны и другие виды задач без начальных условий.



	Весьма важной является задача без начальных условий для полубесконечного стержня (), когда требуется найти решение уравнения теплопроводности для  и , удовлетворяющее условию

     

где  – заданная функция.
	Наиболее часто встречаются задачи без начальных условий при периодическом граничном режиме

.
	Естественно считать, что по прошествии большого промежутка времени температура стержня практически также меняется по периодическому закону с той же частотой. Однако, если мы захотим точно учитывать начальные условия, то формально никогда не получим периодического решения, так как влияние начальных условий, хотя и будет ослабевать с течением времени, но в нуль не обратится; учитывать это влияние ввиду ошибок наблюдения нет никакого смысла. Рассматривая периодическое решение, мы пренебрегаем влиянием начальных данных.
	Постановка краевых задач, изложенная выше, относится, конечно, не только к уравнению с постоянными коэффициентами. Под словами «уравнение теплопроводности» мы могли бы понимать любое из уравнений предыдущих пунктов.
	Помимо перечисленных выше линейных краевых задач, ставятся также задачи с нелинейными граничными условиями, например, вида

.


Это граничное условие соответствует излучению по закону Стефана – Больцмана с торца  в среду с температурой . Остановимся более подробно на постановке краевых задач. Рассмотрим первую краевую задачу для ограниченной области. 

	Р е ш е н и е м  п е р в о й  к р а е в о й  з а д а ч и будем называть функцию , обладающую следующими свойствами:

	1)  определена и непрерывна в замкнутой области

;

	2)  удовлетворяет уравнению теплопроводности в открытой области 

;

	3)  удовлетворяет начальному и граничным условиям, т.е.  

,

где  – непрерывные функции, удовлетворяющие условиям сопряжения


   и   ,

необходимым для непрерывности  в замкнутой области.





















	Рассмотрим плоскость фазовых состояний . В нашей задаче ищется функция , определенная внутри прямоугольника . Эта область определяется самой постановкой задачи, так как изучается процесс распространения тепла в стержне  за промежуток времени , в течение которого нам известен тепловой режим на краях. Пусть ; мы предполагаем, что  удовлетворяет уравнению только при , но не при  (сторона ) и не при  (стороны  и  ), где начальными и граничными условиями непосредственно задаются значения этой функции. Если бы мы потребовали, чтобы уравнение удовлетворялось, например, при , то этим мы потребовали бы, чтобы существовала производная , входящая в уравнению. Этим требованием мы ограничили бы область изучаемых физических явлений, исключив из рассмотрения те функции, для которых это требование не выполняется. Условие 3) без предположения непрерывности  в области ,  (т.е. в замкнутом прямоугольнике  или какого-либо другого условия, заменяющего это предположение, теряет смысл[footnoteRef:5]. Действительно, рассмотрим функцию , определенную следующим образом: [5:  Ниже будут рассмотрены краевые задачи с разрывными граничными и начальными условиями. Для этих задач будет уточнено, в каком смысле понимается выполнение граничных условий.] 



          (),


          (),


      (),








где  – произвольная постоянная. Функция , очевидно, удовлетворяет условию 2), а также граничным условиям. Однако эта функция не представляет процесса распространения температуры в стержне при начальной температуре  и граничных температурах   и , так как она разрывна при , ,  .






	Непрерывность функции  при ,  следует из того, что эта функция удовлетворяет уравнению. Таким образом, требование непрерывности  при , , по существу относится только к тем точкам, где задаются граничные и начальные значения. В дальнейшем мы под словами «решение уравнения, удовлетворяющее граничным условиям», будем подразумевать функцию, удовлетворяющую требованиям 1), 2), 3), не оговаривая эти условия каждый раз, если в этом нет специальной необходимости.
	Аналогично ставятся и другие краевые задачи, в том числе задачи на бесконечном стержня и задачи без начальных условий. 

	Для задач с несколькими независимыми геометрическими переменными все сказанное выше сохраняет силу. В этих задачах при  задается начальная температура, на поверхности тела – граничные условия. Можно рассматривать также и задачи для бесконечной области.
	В отношении каждой из поставленных задач возникает следующие вопросы:
	1) единственность решения поставленной задачи,
	2) существование решения,
	3) непрерывная зависимость решения от дополнительных условий.
	Если поставленная задача имеет несколько решений, то слова «решение задачи» не имеют определенного смысла. Поэтому прежде чем говорить о решении задачи, необходимо доказать его единственность. Для практики наиболее существенным является вопрос 2), так как при доказательстве существования решения обычно дается способ вычисления решения.
	Как было отмечено ранее процесс называется физически определенным, если при малом изменении начальных и граничных условий задачи ее решение меняется мало. В дальнейшем будет доказано, что процесс распространения тепла физически определяется своими начальными и граничными условиями, т.е. небольшое изменение начального и граничных условий мало изменяется и само решение.
	5. Принцип максимального значения. В дальнейшем мы будем рассматривать уравнение с постоянными коэффициентами

.
Как мы видели, это уравнение подстановкой



     при    ,   
приводится к виду

.
	Докажем следующее свойство решений этого уравнения, которое мы будем называть принципом максимального значения.



	Если функция , определенная и непрерывная в замкнутой области  и , удовлетворяет уравнению теплопроводности 

                                           (19)





в точках области , , то максимальное и минимальное значения функции  достигаются или в начальный момент, или в точках границы , или .




	Функция , очевидно, удовлетворяет уравнению теплопроводности и достигает своего максимального (минимального) значения в любой точке. Однако это не противоречит теореме, так как из ее условия следует, что если максимальное (минимальное) значение достигается внутри области, то оно также (а не только) должно достигаться или при , или при , или при .


	Физический смысл этой теоремы очевиден: если температура на границе и в начальный момент не превосходит некоторого значения , то при отсутствии источников внутри тела не может создаться температура, большая . Остановимся сначала на доказательстве теоремы для максимального значения.







	Доказательство теоремы ведутся от противного. Обозначим через  максимальное значение  при  , или при , или при [footnoteRef:6]  и допустим, что в некоторой точке  функция  достигает своего максимального значения, равного [6:  Если не предполагать непрерывности  в замкнутой области , то функция  могла бы не достигать своего максимума ни в одной точке, и дальнейшие рассуждения были неприменимы. В силу теоремы о том, что всякая непрерывная функция достигает своего максимального значения в замкнутой области, мы можем быть уверены, что: 1) функция  достигает максимального значения на нижней или боковых сторонах прямоугольника, которое мы обозначили через ; 2) если  хотя бы в одной точке больше , то существует точка , в которой  достигает максимального значения, превосходящего :
  , 
причем .
] 


.


	Сравним знаки левой и правой частей уравнения (19) в точке . Так как в точке  функция достигает своего максимального значения, то необходимо должно быть 


     и      .[footnoteRef:7]                     (20) [7:  Действительно, как известно из анализа, достаточными условиями для того, чтобы функция  в точке , лежащей внутри интервала , имела относительный минимум, являются следующие условия: ,  . Таким образом, если  в точке , имеет максимальное значение, то 1)  и 2) не может быть чтобы , т.е. .] 



Далее, так как  достигает максимального значения при  то[footnoteRef:8]  [8:  При этом ясно, что если , то , если же , то .] 


.                                      (21)



Сравнивая знаки правой и левой части уравнения (19), мы видим, что они различны. Однако, это рассуждение еще не доказывает теоремы, так как правая и левая части могут быть равны нулю, что не влечет за собой противоречия. Мы привели это рассуждение, чтобы яснее выделить основную идею доказательства. Для полного доказательства найдем точку , в которой  и . Для этого рассмотрим вспомогательную функцию

,                                (22)

где  – некоторое постоянное число. Очевидно, что  


и

.









Выберем  так, чтобы  был меньше , т.е. ; тогда максимальное значение  при  или при ,  не будет превосходить , т.е.




       (при  или , или ),       (23)


так как для этих аргументов первое слагаемое формулы (22) не превосходит , а второе –  .


	В силу непрерывности функции  она должна в некоторой точке  достигать своего максимального значения. Очевидно, что

.








Поэтому  и , так как при   или  , или   имеет место неравенство (23). В точке , по аналогии с (20) и (21), должно быть , . Учитывая (22), находим:

,

.
	Отсюда следует, что

,






т.е. уравнение (19) во внутренней точке  не удовлетворяется. Тем самым доказано, что решение  уравнения теплопроводности (19) внутри области не может принимать значений, превосходящих наибольшее значение  на границе (т.е. или при ,  или при , или при  ).


	Аналогично может быть доказана и вторая часть теоремы о минимальном значении. Впрочем, это не требует отдельного доказательства, так как функция  имеет максимальное значение там, где  – минимальное. 
	Обратимся теперь к установлению ряда следствий из принципа максимального значения. Прежде всего докажем теорему единственности для первой краевой задачи.




	6. Теорема единственности. Если две функции,  и  , определенные и непрерывные в области , , удовлетворяют уравнения теплопроводности


       (для ),             (24)
одинаковым начальным и граничным условиям

,

,

,

то [footnoteRef:9].  [9:  В пункте 3, § 2 эта теорема будет усилена и требование непрерывности при  снято.] 

	Для доказательства этой теоремы рассмотрим функцию

.


	Поскольку функции   и   непрерывны при 


, ,






то и функция , равная их разности, непрерывна в этой же области. Как разность двух решений уравнения теплопроводности в области , функция  является решением однородного уравнения теплопроводности в этой области. Таким образом, принцип максимального значения применим к этой функции, т.е. она достигает своего максимального и минимального значений или при , или при  , или при  . Однако по условию мы имеем:



,    ,    .
Поэтому

,
т.е. 

.
Отсюда следует, что решение первой краевой задачи единственно.
	Докажем еще ряд прямых следствий из принципа максимального значения. При этом в дальнейшем мы будем говорить просто «решение уравнения теплопроводности» вместо более подробного перечисления свойств функций, удовлетворяющих, кроме того, начальным и граничным условиям.


	1. Если два решения уравнения теплопроводности    и  удовлетворяют условиям 

,    


,    ,
то 



для всех значений  .

	Действительно, разность   удовлетворяет условиям, при которых установлен принцип максимального значения, и, кроме того,



,   ,   .
Поэтому



    для    ,   .
	2. Если три решения уравнения теплопроводности 



,   ,  
 удовлетворяют условиям




    при   ,    ,    ,


то эти же неравенства выполняются тождественно, т.е. для всех    при  .
	Это утверждение является применением следствия 1 к функциям 


   и    .


	3. Если для двух решений уравнения теплопроводности    и  имеет место неравенство




  для  ,    ,  ,
то 



тождественно, т.е. имеет место для всех   при

    .
	Это утверждение вытекает из следствия 2, если его применить к решениям уравнения теплопроводности

,

,

.
	Следствие 3 позволяет установить непрерывную зависимость решения первой краевой задачи от начального и граничных значений. Если мы в некоторой физической задаче вместо решения уравнения теплопроводности, соответствующего начальному и граничным условиям



,   ,   ,








возьмем решение , соответствующее другим начальному и граничным значениям, определяемым функциями ,, , не отличаемыми в пределах заданной степени точности  от функций  ,   и  :



,   ,   ,



то функция  будет отличаться от функции  в пределах той же точности 

.
В этом и заключается принцип физической определенности задачи.
	Мы подробно провели изучение вопроса о единственности и физической определенности задачи на примере первой краевой задачи для ограниченного отрезка. Теорема единственности первой краевой задачи для ограниченной области в пространстве двух или трех измерений может быть доказана буквальным повторением приведенных выше рассуждений.
	Подобные же вопросы возникают при изучении других задач, целый ряд которых был поставлен нами в предшествующем параграфе. Эти задачи требуют некоторого видоизменения метода доказательства.
	Единственность решения задачи для неограниченной области или задача без начальных условий имеет место лишь при наложении некоторых дополнительных условий на изучаемые функции.




	7. Теорема единственности для бесконечной прямой. При решении задачи на бесконечной прямой существенным является требование ограниченности искомой функции во всей области, т.е. существование такого , что  для всех  и .



	Если   и   – непрерывные, ограниченные во всей области изменения переменных  функции, удовлетворяющие уравнению теплопроводности



      (,  )                  (19)
и условию 


    (),
то 



    (,  ).
	Рассмотрим, как обычно, функцию

.

	Функция  непрерывна, удовлетворяет уравнению теплопроводности, ограничена во всей области



   (,  )
и удовлетворяет условию

.

	Принцип максимального значения, которым мы пользовались при доказательстве единственности задачи для отрезка, здесь неприменим, так как в неограниченной области функция  может нигде не достигать максимальных значений. Чтобы воспользоваться этим принципом, рассмотрим область

, 

где  – вспомогательное число, которое затем будем неограниченно увеличивать, и функцию 

.                             (25)

Функция   непрерывна, удовлетворяет уравнению теплопроводности, в чем нетрудно убедиться дифференцированием, и кроме того, обладает следующими свойствами:

,

.                             (26)




Для ограниченной области  справедлив принцип максимального значения. Применяя следствие 2 из предыдущего пункта для функции ,    и    и учитывая (26), получаем:

.



	Фиксируем некоторые значения  и, воспользовавшись произволом выбора , будем его неограниченно увеличивать. Переходя к пределу при , получим:

,
что и доказывает теорему.
2
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