§ 2. Метод разделения переменных

1. Однородная краевая задача. Перейдем к решению первой краевой задачи для уравнения теплопроводности на отрезке:

		(1)
с начальным условием

			(2)
и граничными условиями 

			(3)
	Изучение общей первой краевой задачи начнем с решения следующей простейшей задачи I:

	найти непрерывное в замкнутой области  решение однородного уравнения 

		(4)
удовлетворяющее начальному условию

			(2)
и однородным граничным условиям

			(5)
	Для решения этой задачи рассмотрим, как принято в методе разделения переменных, сначала основную вспомогательную задачу:
	найти решение уравнения


не равное тождественно нулю, удовлетворяющее однородным граничным условиям  

				(5)
и представимое в виде

,				(5)



где функция только переменного функция только переменного .

	Подставляя предпологаемую форму решения (6) в уравнение (4) и производя деление обеих частей равенства на , получим:

				(7)



где  так как левая часть равенства зависит только от , а правая – только от 
	Отсюда следует, что 

					(8)


					()
Граничные условия (5) дают:

				(9)

Таким образом, для определения функции  мы получили задачу о собственных значениях (задачу Штурма–Лиувилля)

			(10)

исследованную при решении уравнения колебаний в главе II (см. § 3, п. 1). При этом было показано, что только для значений параметра , равных

			(11)
существуют нетривиальные решения уравнения (8), равные

				(12)


 Этим значениям  соответствуют решения уравнения () 

				(13)

где не определенные пока коэффициенты.
	Возвращаясь к основной вспомогательной задаче, видим, что функции

		(14)
являются частными решениями уравнения (4), удовлетворяющими нулевым граничным условиям.
	Обратимся теперь к решению задачи (I). Составим формально ряд

			(15)

Функция  удовлетворяет граничным условиям, так как им удовлетворяют все члены ряда. Требуя выполнения начальных условий, получаем:

				(16)



т. е.  являются коэффициентами Фурье функции  при разложении ее в ряд по синусам на интервале :

				(17)

Рассмотрим теперь ряд (15) с коэффициентами , определяемыми по формуле (17), и покажем, что этот ряд удовлетворяет всем условиям задачи (I). Для этого надо доказать, что



функция  определяемая рядом (15), дифференцируема, удовлетворяет уравнению в области  и непрерывна в точках границы этой области (при ).




Так как уравнение (4) линейно, то в силу принципа суперпозиции ряд, составленный из частных решений, также будет решением, если он сходится и его можно дифференцировать почленно дважды по  и один раз по  (см. лемму главы II, § 3, п. 3). Покажем, что при  (любое вспомогательное число) ряды производных


  и  
сходятся равномерно. В самом деле,

.



В дальнейшем будут сформулированы дополнительные требования, которым должна удовлетворять функция . Предположим сначала, что  ограничена, ; тогда


откуда следует, что


 для 
и аналогично


 для .
Вообще


 для .


Исследуем сходимость мажорантного ряда , где 


			   	       ()
По признаку Даламбера этот ряд сходится, так как



.




Отсюда вытекает возможность почленного дифференцирования ряда (15) любое число раз в области  Далее, пользуясь принципом суперпозиции, заключаем, что функция, определенная этим рядом, удовлетворяет уравнению (4). В силу произвольности  это имеет место для всех . Тем самым доказано, что при ряд (15) представляет функцию, дифференцируемую нужное число раз и удовлетворяющую уравнению (4)[footnoteRef:1]1). [1: 1)  При доказательстве того, что ряд (15) удовлетворяет уравнению  при , была использована только ограниченность коэффициентов Фурье , которая, в частности, будет иметь место для любой ограниченной .] 




	Если функция  непрерывна, имеет кусочно-непрерывную производную и удовлетворяет условиям  и , то ряд

			(15)

определяет непрерывную функцию при .
Действительно, из неравенства


       (при  )



сразу же следует равномерная сходимость ряда (15) при , что и доказывает справедливость сделанного выше утверждения, если учесть, что для непрерывной и кусочно-гладкой функции  ряд из модулей коэффициентов Фурье сходится, если [footnoteRef:2]2). [2: 2)  См. гл. II, § 3, п. 3.] 

Итак, задача нахождения решения первой краевой задачи для однородного уравнения с нулевыми граничными условиями и непрерывным, кусочно-гладким начальным условием решена полностью.

2. Функция источника. Преобразуем полученное решение (15), заменяя  их значениями:









Изменение порядков суммирования и интегрирования всегда законно при  в силу того, что ряд в скобках сходится равномерно по  при [footnoteRef:3]1). [3: 1) Ряд , где  определяется формулой (), при  является мажорантным для ряда, стоящего в скобках.] 

Обозначим 

		(18)


Пользуясь функцией , можно представить функцию в виде

Функция  называется функцией мгновенного точечного источника или, более подробно, функцией температурного влияния мгновенного точечного источника тепла.






Покажем, что функция источника , рассматриваемая как функция , представляет распределение температуры в стержне  в момент времени , если температура в начальный момент  равна нулю и в этот момент в точке  мгновенно выделяется некоторое количество тепла (величину которого мы определим позже), а на краях стержня все время поддерживается нулевая температура.



Выражение «количество тепла , выделяющееся в точке  обозначает, как обычно, что мы имеем дело с теплом, выделяющимся на «небольшом» интервале около изучаемой точки .



Изменение температуры , вызываемое появлением тепла около точки, будет, очевидно, равно нулю вне интервала , на котором выделяется тепло, а внутри этого интервала  можно считать положительной, непрерывной и дифференцируемой функцией, для которой

				(20)

так как левая часть этого уравнения и представляет количество тепла, вызвавшее изменение температуры на величину . Процесс распространения температуры в этом случае определяется формулой (19):

.			(21)




Совершим теперь предельный переход при . Принимая во внимание непрерывность  при  и равенство (20) и применяя теорему среднего значения при фиксированных значениях  будем иметь:




	()





где некоторая средняя точка интервала . В силу непрерывности функции  по  при  получаем:



		(22)







Отсюда следует, что  представляет температуру в точке  в момент , вызванную действием мгновенного точечного источника мощности , помещенного в момент  в точке  промежутка .






Отметим следующее свойство функции : функция  при любых  и . Действительно, рассмотрим начальную функцию , обладающую перечисленными выше свойствами, и соответствующее ей решение (). Из неотрицательности начального и граничных условий в силу
принципа максимального значения следует, что





для всех  и . Отсюда, воспользовавшись формулой  имеем:




Переходя к пределу при  из () получим неравенство



 при  и ,
которое и надо было доказать.

Этот результат имеет простой физический смысл. Однако установить его непосредственно из формулы (19) было бы затруднительно, поскольку  представляется знакопеременным рядом.

3. Краевые задачи с разрывными начальными условиями. Изложенная выше теория относится к решениям уравнения теплопроводности, непрерывным в замкнутой области  Эти условия непрерывности являются весьма ограничительными. В самом деле, рассмотрим простейшую задачу об остывании равномерно нагретого стержня при нулевой температуре на краях. Дополнительные условия имеют вид

.



Если , то решение этой задачи должно быть разрывным в точках () и (). Этот пример показывает, что поставленные выше условия непрерывности начального значения и условия сопряжения его с граничными значениями исключают из рассмотрения практически важные случаи. Однако формула (19) дает решение краевой задачи и в этом случае.
В приложениях часто пользуются формулами, выходящими за границы условий их применимости, зачастую вообще не ставя вопроса об условии применимости формул. Последовательное обоснование всех формул было бы весьма громоздким и часто отвлекало бы внимание исследователя от количественных и качественных сторон явления, характерных для физической сущности процесса.
Однако мы считаем нужным, по крайней мере на простейших примерах, дать обоснование математического аппарата, достаточное для решения основных задач.
Рассмотрим краевые задачи с кусочно-непрерывными начальными функциями, не предполагая, что начальная функция сопряжена с граничными условиями. Этот класс дополнительных условий является достаточно общим для потребностей практики и достаточно простым для изложения теории. Нашей целью является доказать, что та же формула (19) дает решение поставленной задачи. Проведем ее исследование в несколько этапов. Докажем предварительно теорему:
Решение уравнения теплопроводности

			(4)

непрерывное в замкнутой области  и удовлетворяющее условиям

				(5)

,				(2)


где произвольная непрерывная функция, обращающаяся в нуль при , определено однозначно и представляется формулой

.				(10)

Эта теорема была доказана выше в предположении дополнительного условия о кусочно-непрерывной дифференцируемости функции .












Освободимся от этого условия. Рассмотрим последовательность непрерывных кусочно-дифференцируемых функций , равномерно сходящуюся к . (В качестве  можно выбрать, например, функции, представимые ломаными линиями, совпадающими с  в точках ). Функции , определяемые формулой (19) через , удовлетворяют всем условиям теоремы, так как  удовлетворяют условию кусочной дифференцируемости. Эти функции равномерно сходятся и определяют в пределе непрерывную функцию . В самом деле, для любого  можно указать такое , что


 если 
так как эти функции по условию сходятся равномерно. Отсюда в силу принципа максимальных значений следует также, что 


, если 


что и доказывает равномерную сходимость последовательности функций  к некоторой непрерывной функции .

Если мы, фиксировав точку (), перейдем к пределу под знаком интеграла, то получим, что функция




непрерывна в замкнутой области  и удовлетворяет начальному условию (2). В силу сноски на стр. 200 нетрудно убедиться, что она также удовлетворяет уравнению (4) при . Доказательство теоремы закончено.
Формула (19) дает единственное непрерывное решение рассматриваемой задачи.


Обратимся к доказательству теоремы единственности для случая кусочно-непрерывной начальной функции  не предполагая, что эта функция сопряжена с граничными условиями. Докажем, что функция, непрерывная в области  удовлетворяющая уравнению теплопроводности

						(4)

в области , нулевым граничным условиям

					(5)
и начальному условию 

					(2)
определена однозначно, если:

1) она непрерывна в точках непрерывности функции  и


2) ограничена в замкнутой области , где произвольное положительное число.

Предположим, что такая функция существует. Очевидно, что в силу предшествующей теоремы она может быть представлена в области  формулой


		()


при любом  где вспомогательное значение,






Совершим предельный переход в этой формуле при , сохраняя  и  неизменными. Покажем[footnoteRef:4]1), что возможен переход под знаком интеграла и, следовательно, функция  представима в виде интеграла [4: 1) Доказываемая ниже теорема является частным случаем теоремы Лебега о возможности перехода к пределу под знаком интеграла, если последовательность функций  почти всюду сходится к предельной суммируемой функций  и если та последовательность ограничена суммируемой функцией. Это доказательство приводится, чтобы избежать пользования теоретико-множественными понятиями. Если воспользоваться теоретико-множественными понятиями, то совершенно аналогично можно доказать теорему о том, что решение уравнения теплопроводности  удовлетворяющее нулевым граничным условиям, однозначно определено:
1) если , где некоторая суммируемая функция и
2) если почти всюду

где  заданная начальная суммируемая функция.] 


		(19)
однозначно ее определяющего. 





Пусть точки разрыва функции . Полагая  и   (рис. 38) и беря замкнутые отрезки .
[image: ]
Рис. 38.




















, где некоторое фиксированное достаточно малое число, нетрудно убедиться, что подынтегральная функция из () равномерно сходится к подынтегральной функции из (19) на всяком отрезке , . На отрезках  , , и  подынтегральные выражения в (19) и () ограничены некоторым числом  при любом  в силу предположенной ограниченности функции  и в силу непрерывности  при . Разбивая разность интегралов (19) и () на  интеграла, взятых по  и ), видим, что эта разность может быть сделана меньше наперед заданного числа  если


так что

,

и если  выбрано настолько малым, что




так что



Отсюда следует неравенство





доказывающее законность перехода к пределу при  под знаком интеграла. Таким образом, если существует функция , удовлетворяющая условиям теоремы, то она представима в виде (19), что и доказывает единственность такой функции.


	Докажем теперь, что формула (19) представляет ограниченное решение уравнения (4), удовлетворяющее условиям (2) для любой кусочно-непрерывной функции , непрерывное во всех точках непрерывности .

Эту теорему мы докажем в два приема. Докажем, что она верна, если линейная функция:


					()
 
[image: ] Рассмотрим последовательность вспомогательных непрерывных функций (рис. 39)

Рис. 39.




Функции , определенные при помощи формулы (19) для , являются непрерывными решениями уравнения теплопроводности с нулевыми граничными условиями и начальными условиями

.
Так как


то в силу принципа максимальных значений

.

Функция  является непрерывным решением уравнения теплопроводности. В силу принципа максимального значения

,




так как это неравенство имеет место при  и . Таким образом,  есть монотонно неубывающая последовательность, ограниченная сверху функцией , откуда следует, что эта последовательность сходится. Нетрудно видеть, что



,







так как переход к пределу под знаком интеграла законен. В силу сноски на стр. 204 эта функция удовлетворяет уравнению и нулевым граничным условиям при . Докажем, что эта функция непрерывна при  для . Пусть . Выберем  так, чтобы . В этом случае . Принимая во внимание, что


и что


заключаем, что существует предел








не зависящий от способа стремления  и . Отсюда и следует непрерывность  в точке . Эта функция ограничена, так как она не превосходит . Итак, для  теорема доказана.


Заменой  на  убеждаемся в том, что теорема верна для


					()
Отсюда следует, что она верна для любой функции типа






так как подобная функция может быть получена суммированием  и (). Далее, отсюда следует также, что теорема верна для любой непрерывной функции без предположения о том, что . В самом деле, любую функцию  такого типа можно представить в виде

,



где слагаемое в квадратных скобках–линейная функция, а непрерывная функция, обращающаяся в нуль на концах отрезка: . Так как мы убедились уже в том, что для каждого слагаемого теорема применима, то отсюда следует, что теорема верна и для .


Обратимся теперь к доказательству теоремы для произвольной кусочно-непрерывной функции . Формула (19) и в этом случае определяет решение, удовлетворяющее уравнению и нулевым граничным условиям.










Пусть точка какая-либо точка непрерывности функции . Докажем, что для любого  можно найти  такое, что , если  и . В силу непрерывности функции  в точке  существует  такое, что


откуда

	(23)


Построим вспомогательные непрерывные дифференцируемые функции  и :

		(а)

		(б)



На интервале  функции  и  удовлетворяют только условиям (а) и (б), а в остальном произвольны. В силу неравенств (23),

				(24)
Рассмотрим функции










В силу непрерывности функций  и  функции  и  непрерывны в точке , т. е. найдется такое , что


откуда



В силу неотрицательности функции  из формулы следует, что

			(25)
Отсюда получаем неравенства


или





что и требовалось доказать. Ограниченность функции следует из (25) и из ограниченности функций  и . Этим теорема доказана.
4. Неоднородное уравнение теплопроводности. Рассмотрим неоднородное уравнение теплопроводности

				(1)
с начальным условием

					(26)

и граничными условиями

					(5)


Будем искать решение этой задачи  в виде ряда Фурье по собственным функциям задачи (11), т. е. по функциям :

				(27)




считая при этом  параметром. Для нахождения функции  надо определить функции . Представим функцию  в виде ряда

,
где

.			(28)
Подставляя предполагаемую форму решения в исходное уравнение (1), будем иметь:


Это уравнение будет удовлетворено, если все коэффициенты разложения равны нулю, т. е.

			(29)

Пользуясь начальным условием для 



получаем начальное условие для :

.						(30)
Решая обыкновенное дифференциальное уравнение (29) с нулевым начальным условием (30)[footnoteRef:5]1), находим: [5: 1) См. мелкий шрифт в конце п. 4, § 3, гл. II.] 


.				(31)

Подставляя выражение (31) для  в формулу (27), получим решение исходной задачи в виде



Воспользуемся выражением (28) для  и преобразуем найденное решение (32):



			(33)
где

	(34)
совпадает с функцией источника, определяемой формулой (18).
Выясним физический смысл полученного решения

			(33)


Предположим, что функция  отлична от нуля лишь в достаточно малой окрестности точки 

.



Функция  представляет плотность тепловых источников. Общее количество тепла, выделяющееся на отрезке     за все время действия источника (т. е. за ), равно

			(35)
Применим теорему о среднем к выражению




где




Переходя к пределу при  и , получим функцию

		(36)


которую можно интерпретировать как функцию влияния мгновенного источника тепла, сосредоточенного в точке  в момент .



Если известна функция , представляющая действие единичного мгновенного сосредоточенного источника, то действие источников, непрерывно распределенных с плотностью , должно выражаться формулой (33), как это непосредственно следует из физического смысла функции .

Итак, температурное влияние тепловых источников, действующих в области  дается выражением

.



Если источники распределены непрерывно, то, суммируя тепловые влияния источников, действующих во всей области , получим после предельного перехода при  и 

.

Таким образом, исходя из физического смысла функции источника , можно было бы сразу написать выражение (33) для функции, дающей решение неоднородного уравнения.

Имея форму, в которой должно представляться решение задачи, можно исследовать условия применимости этой формулы в отношении функции . Мы не будем проводить этого исследования.

Мы рассматривали здесь неоднородное уравнение с нулевыми начальными условиями. Если начальное условие отлично от нуля, то к этому решению следует прибавить решение однородного уравнения с заданным начальным условием , найденное в п. 1.
5. Общая первая краевая задача. Рассмотрим общую первую краевую задачу для уравнения теплопроводности:
найти решение уравнения

				(1)
с дополнительными условиями

,					(2)

					(3)

Введем новую неизвестную функцию 

				(37)

представляющую отклонение от некоторой известной функции .

Эта функция  будет определяться как решение уравнения


с дополнительными условиями



Выберем вспомогательную функцию  таким образом, чтобы


  и  
для чего достаточно положить[footnoteRef:6]1) [6: 1) См. гл. II, § 3, п. 5.] 






Таким образом, нахождение функции , дающей решение общей краевой задачи, сведено к нахождению функции , дающей решение краевой задачи с нулевыми граничными условиями. Метод нахождения функции  дан в п. 4.



Изложенная выше формальная схема решения задач при наличии неоднородностей в уравнении и граничных условиях не всегда удобна для представления искомой функции . Трудности, возникающие при нахождении вспомогательной функции , зависят от функции , от которой ищется отклонение.
В частности, для задач со стационарными неоднородностями удобнее выделять стационарное решение и искать отклонение от этого решения[footnoteRef:7]2). [7: 2) См. гл. II, § 3, п. 6.] 





Рассмотрим, например, задачу для ограниченного стержня . концы которого поддерживаются при постоянных температурах  и :

,

,

,

.
Решение будем искать в виде суммы

,


где стационарная температура, а отклонение от стационарной температуры.


Для функций  и   будем иметь условия








Отсюда находим:

.

Функцию , определяемую начальным условием и однородными граничными условиями, без труда находим методом разделения переменных.

Задачи

1. Вывести уравнение для процесса нагревания однородной тонкой проволоки постоянным электрическим током, если на ее поверхности происходит теплообмен с окружающей средой.


2. Вывести уравнение диффузии в среде, равномерно движущейся в направлении оси  со скоростью . Рассмотреть случай одной независимой переменной.


3. Исходя из уравнений Максвелла, предполагая  и пренебрегая токами смещения, показать, что в однородной проводящей среде составляющая электромагнитного поля  удовлетворяет уравнению





где проводимость среды, скорость света. Вывести уравнения для .
4. Дать физическое истолкование следующих граничных условий в задачах теплопроводности и диффузии:


a)  	б) 


в)  	
5. Решить задачу об остывании равномерно нагретого однородного стержня при нулевой температуре на концах, предполагая отсутствие теплообмена на боковой поверхности.





6. Начальная температура стержня  при . Температура концов поддерживается постоянной ;   при . Найти температуру стержня, если теплообмен на боковой поверхности отсутствует. Найти стационарную температуру.
7. Решить задачу 6 при следующих граничных условиях: на одном конце поддерживается постоянная температура, второй конец теплоизолирован.
8. Решить задачу о нагревании тонкой однородной проволоки постоянным электрическим током, если начальная температура, граничная температура, а также температура окружающей среды равны нулю.



9. Цилиндр длины , заполненный воздухом при давлении и температуре окружающей среды, открывают с одного конца в начальный момент времени, н из окружающей атмосферы, где концентрация некоторого газа равна , начинается диффузия газа в цилиндр. Найти количество газа, диффундировавшего в цилиндр за время , если начальная концентрация газа в цилиндре равна нулю.
10. Решить задачу 9 в предположении, что левый конец цилиндра закрыт полупроницаемой перегородкой.


11. Решить задачу об остывании однородного стержня с теплоизолированной боковой поверхностью, если его начальная температура , а на концах происходит теплообмен со средой нулевой температуры. Рассмотреть частный случай .

12. Решить задачу 11, предполагая, что температура окружающей среды равна .
13. Решить задачу 11, считая, что на боковой поверхности происходит теплообмен со средой, температура которой:
a) равна нулю

б) постоянна и равна .
14. Найти установившуюся температуру стержня, пренебрегая теплообменом на боковой поверхности и считая, что одии конец стержия теплоизолирован, а ко второму концу подводится поток тепла, гармонически меняюшийся во времени.
15. Решить задачу 14, считая, что один конец стержня имеет иулевую температуру, а температура второго конца гармоннцески меняется во времени.





16. Стержень  составлен из двух однородных кусков одинакового поперечного сечения, соприкасающихся в точке  и обладающих характеристиками  и, соответственно, . Найти установившуюся температуру в таком стержне (тепловые волны), если один конец стержня  поддерживается при нулевой температуре, а температура второго меняется синусоидально во времени.


17. Левый конец составного стержня задачи 16 поддерживается при температуре, равной нулю, а правый–при температуре , начальная же температура стержня равна нулю. Найти температуру  стержня на регулярном режиме (первый член разложения).

18. Найти температуру  стержня, начальная температура которого равна нулю, а граничные условия имеют вид

,
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