ЗАДАЧИ  НА  БЕСКОНЕЧНОЙ   ПРЯМОЙ

	 
1. Распространение тепла на бесконечной прямой. Функция источника для неограниченной области. Рассмотрим на бесконечной прямой задачу с начальными данными (задачу Коши): 


Найти ограниченную функцию  определенную в области  удовлетворяющую уравнению теплопроводности

                                                                  (1)
и начальному условию

                                                                    (2)



Если  непрерывная функция, то выполнение начального условия будем понимать в том смысле, что  нерпрерывно при  т.е.


Как мы видели в.п. 7, § 1, решение уравнения теплопроводности однозначно определяется своими начальными условиями, если оно ограничено. Поэтому в формулировку теорем вводится условие ограниченности. 
Дадим сначала формальную схему решения поставленной задачи, основанную на разделении переменных. 
Будем искать ограниченное нетривиальное решение уравнения (1), представимое в виде произведения

                                                                                     (3)
Подставляя выражение (3) и (1), получаем:



где параметр разделения. Отсюда следует:

                                                                                          (4)

                                                                                            (5)
Решая уравнения (4) и (5), найдем частные решения уравнения (1) вида 

                                                                                      (6)


удовлетворяющие условию ограниченности. Здесь любое вещественное число  поэтому в (6) возьмем знак «плюс» и образуем функцию 

                                                                     (7)
Если производные, входящие в уравнение (1), можно вычислять путем дифференцирования под знаком интеграла (7), то функция (7), очевидно, будет удовлетворять уравнению (1) как суперпозиция частных решений этого уравнения. 

	Требуя выполнения начального условия при  будем иметь

                                                                               (8)
Воспользуемся  теперь  формулой  обратного  преобразования интег-
рала Фурье:

                                                                        (9)
Подставляя (9) и (7) и меняя порядок интегрирования, получим:

                                (10)
Внутренный интеграл в (10) равен[footnoteRef:1] [1:  Б.М. Будак, С.В. Фомин, Кратные интегралы и ряды, «Наука», 1965. ] 


                                             (11)
Подставляя (11) в (10), приходим к интегральному представлению искомого решения 

                                                                          (12)
где

                                                                          (13)

Функцию    определяемую  формулой  (13), часто  называют 
фундаментальным решением уравнения теплопроводности. 
	Непосредственной проверкой можно убедиться в том, что функция

                                            (13’)





Представляет температуру в точке  в момент времени ,  если в начальный момент времени   в точке  выделяется количество тепла 


	Функция  удовлетворяет уравнению теплопроводности по переменным [footnoteRef:2], что можно проверить 
непосредственным дифференцированием.  [2:  В самом деле, 

т.е.

] 



	Количество тепла, находящееся на оси  в момент  равно 


так как






Таким образом, количество тепла на нашей прямой не меняется с течением времени. Функция  зависит от времени только через аргумент  так что эту функцию можно записать в виде 

                                                                                                (13’’)



На рис. 1 изображен график  в зависимости от  для различных значений . Почти вся площадь, ограниченная этой кривой, находится над промежутком









где сколь угодно малое число, если только достаточно малое число. Величина этой площади, умноженная на равна количеству тепла, подведенному в начальный момент. Таким образом, для малых значений   почти все тепло сосредоточено в малой окрестности точки . Из сказанного выше следует, что в момент  все количество тепла помещается в точке .



	Рассматривая изменение темпратуры в фиксированной точке  с течением времени при , т.е. при  получим:



Таким образом, температура в этой точке, где выделяется тепло, для малых  неограниченно велика. 



	Если ,  т.е.  то функция  представляется в виде произведения двух мнижителей:













	Втрой сомножитель меньше единицы: при больших  он  при малых  он  Отсюда следуети, что  для больших    для малых . Чем меньше ,  чем ближе  к , тем больше втройц множитель. 
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Рис. 1



График функции  и   при   приведены на рис 2. 
[image: ]
Рис. 2.
	Нетрудно видеть, что 


Раскрывая неопделенность, находим: 




	Формула (13’) показывает, что во всякой точке  температура, создаваемая мгновенным точечным источником, действующим в начальный момент , отлична от нуля для сколь угодно малых моментов времени. Подобный факт можно было бы интерпретировать как результат бесконечно быстрого распространения температуры (бесконечная скорость). Однако это противоречит молекулярно-кинетическим представлениям о природе тепла. Такое противоречие получается в связи с тем, что выше при выводе уравнения теплопроводности мы пользовались феноменологическими предсавлениями о растекании тепла, не учитывающими инерционность процесса движения молекул. 
	Теперь выясним условия применимости формулы (12). 
	Докажем, что формула 

                                                        (12’)




называемая интегралом Пуассона для любой ограниченной функции  представляет при  ограниченное решение уравнения теплопроводности, непрерывно примыкающее при  к  во всех точках непрерывности этой функции. 
	Докажем предварительно лемму (обобщенный принцип суперпозиции). 


	Если функция  по переменным  удовлетворяет линейному дифференциальному уравнению



при любом фиксированном значении параметра  то интеграл




также является решением того же уравнения  если производные, входящие в линейный дифференциальный оператор  можно вычислять при помощи дифференцирования под знаком интеграла. 





	Доказательство леммы крайне просто. Линейный дифференциальный оператор  представляет сумму производных функции  с некоторыми коэффициентами, зависящими от  и  Дифференцирование функции  по  предположению, можно производить под знаком интеграла. Коэффициенты также можно внести под знак интеграла. Отсюда следует, что 




т.е. что функция  удовлетворяет уравнению 
	Напомним достаточные условия дифференцируемости под знаком интеграла, зависящего от параметра. 
	Функция






при конечных пределах  и  дифференцирема под знаком интеграла при тех же условиях относительно функции  и произвольной, ограниченной (и даже абсолютно интегрируемой) функции . Если пределы интегрирования бесконечны, то в этом случае требуется равномерная сходимость интеграла, полученного в результате дифференцирования подынтегральной функции по параметру (см. там же).
	Эти же замечания относятся и к кратным интегралам, зависящим от параметров. 

	Для линейных уравнений  имеет место принцип суперпозиции, заключающийся в том, что функция 



Представлненая в виде суммы конечного числа частных решений, является также решением уравнения. Если мы имеем решение  зависящее от параметра, то интегральная сумма 

                                                            (14)

также является решением уравнения  Доказанная лемма, так же как и лемма на стр. 91, устанавливается условия, при которых предел суммы (14), в нашем случае равный 



Также является решением уравнения  С этой точки зрения доказанную лемму, как и лемму на стр. 91, естественно называть обобщенным принципом суперпозиции. 


	Обратимся к изучению интеграла (12’). Докажем, во-первых, что если функция  ограничена,  то интеграл (12’) сходится и представляет ограниченную функцию. В самом деле, 


так как 




	Докажем далее, что интеграл (12’) удовлетворяет уравнению теплопроводности при  Для этого достаточно доказать, что производные этого интеграла при  можно вычислять при помощи дифференцирования под знаком интеграла. 
	В случае конечных пределов интегрирования это заканно, так как все производные функции




при  непрерывны. Для возможности дифференцирования под знаком интеграла при бесконечных пределах достаточно убедиться в равномерной сходимости интеграла, полученного после дифференцирования под знаком интеграла. Проведем это исследование на примере первой производной по 

	Итак, для доказательства дифференцируемости функции (12) по а также равенства 




Достаточно доказать равномерную сходимость интеграла, стоящего справа, при этом для дифференцируемости в точке  достаточно доказать равнормерную сходимость интеграла в некоторой области значений переменных, содержащей исследуемые значения , например в области 




	Достаточным условием равномерной сходимости интеграла (аналогичным признаку равномерной сходимости ряда) является существование положительной функции  не зависящей от параметров  которая мажорирует функцию 

                                                   (15)
и интеграл от которой сходится 

                                                                    (15’)

Величина  обозначает некоторое число, начиная с которого выполняется неравенство (15). 

	Найдем оценку сверху для абсолютной величины подынтегрального выражения в формуле для 

                            (16)



При любых  и  Нетрудно убедиться в сходимости интеграла (15’) от функции  Интеграл 



сходится, так как под знаком интеграла стоит множитель типа  Отсюда заключаем, что 


	Совершенно аналогично доказывается возможность вычисления всех остальных производных под знаком интеграла. Тем самым доказано, что функция (12’) удовлетворяет уравнению теплопроводности. 
	Обратимся теперь к выяснению основного свойства интеграла (12’), а именно, докажем, что 



 при  и 

во всех точках непрерывности функции 


	Итак, пусть  непрерывна в некоторой точке  Мы должны доказать, что 




т.е. каково бы ни было  можно указать такое  что 


коль скоро


 и 



В силу предполагаемой непрерывности функции  в точке  существует такое  что


если только



Разбивая промежуток интеграции на части, представим  в виде суммы трех слагаемых:



                                                 (18)
где


  и  

Главное слагаемое этой суммы  можно представить в виде 



Интеграл  вычисляется непосредственно


где

                                                                                        (19)




Как только  то верхний предел становится положительным, а нижний – отрицательным, и при  верхний предел стремится к ,  нижний к  Отсюда следует, что 



Таким образом, можно указать такое  что


если только


 и 



Покажем, что остальные ингтегралы:  и малы. Оценим прежде всего интеграла 


Из равенств (18) видно, что при 


имеет место неравенство


Пользуясь неравенством (17), а также тем, что 




каковы бы ни были  и  получаем:

             (21)

где новая переменная  определяется формулой (19). Оценим 




                                             при                            (22)
и аналогично




                                             при                            (23)







так как если  то  и  и если то в последних членах (22) и (23) нижний предел и, соответственно, верхний предел стремятся к  и  Следовательно, можно указать такое что


                                              и                                (24)
если только


       и  
Пользуясь установленными выше оценками (22), (23), получаем:

                                      (25)
если только


  и  



где   равно наименьшему из чисел   и  
	Таким образом, мы доказали, что функция 

                                                        (12’)
ограничена, удовлетворяет уравнению теплопроводности и начальному условию. 



	Если начальное значение задается не при а при  то выражение для  приобретает вид

                                      (12’’)



	Единственность полученного решения для непрерывной функции  следует из теоремы, доказанной в § 2, п. 3. Если начальная  функция  имеет конечное число точек разрыва, то интеграл (12’’) представляет ограниченное решение уравнения (1), непрерывное всюду, кроме точек разрыва функции [footnoteRef:3]. [3:  Пользуясь метод, изложенным в п. 3, § 2, можно убедиться, что функция  перечисленными условиями определяется однозначно. ] 

	Рассмотрим в качестве примера следующую задачу:



	найти решение уравнения теплопроводности, если начальная температура (при ) имеет постоянные, но различные значения для  и  а именно:


Пользуясь формулой (12’), получаем решение задачи в виде

                                         (26)         
так как      


и


В частности, если


то



Профил температуры в заданный момент  дается кривой 





где  представляет абсциссу точки, в которой определяется температура, если за единицу длины, в зависимости от , принимается значение  Построение этой кривой не представляет труда, так как интеграл


Называемый обычно интегралом ошибок, часто встречается в теории вероятности и для него существует подробные таблицы[footnoteRef:4]. [4:  См., например, А.А. Марков, Курс теории вероятностей, где даны таблицы этого интеграла с шестью десятичными знаками. См. также более краткую таблицу в конце книги. ] 



	Формула (26) при произвольных  и  может быть записана в виде 




Отсюда видно, что в точке  температура все время постоянна и равна полусумме начальных значений справа и слева, так как 
	Решение неоднородного уравнения


с нулевыми начальными условиями 


очевидно, должно представляться формулой

                                                       (27)


как то следует из смысла функции  (cм. п. 4, § 2). Мы не будем подробнее заниматься изучением этой формулы и условий применимости, которые надо наложить на функцию 
	2. Краевые задачи для полуограниченной прямой. Как мы уже отмечали в § 1, п. 4, в тех случаях, когда интересуются распределением температуры вблизи одного из концов стержня, а влияние другого конца несущественно, принимают, что этот конец находится в бесконечности. Это приводит к задаче об определении решения уравнения теплопроводности 




на полубесконечной прямой  для значений удовлетворяющего начальному условию


и граничному условию, которое, в зависимости от заданного характера граничного режима, берется в одном из следующих видов:

                                        (первая краевая задача),

                                       (вторая краевая задача)
или

                                            (третья краевая задача).
	В дальнейшем мы ограничимся подробным исследованием только первой краевой задачи, заключающейся в отыскании решения уравнения теплопроводности при дополнительных условиях 

                                                                        (28)

	Для того чтобы условия задачи определяли единственное решение, необходимо наложить некоторые условия в бесконечности. Потребуем в качестве дополнительного требования, чтобы функция   была всюду ограничена 



 для  и  


где некоторого постоянная. Отсюда следует, что начальная функция  должна также удовлетворять условию ограниченности 


	Решение поставленной задачи можно представить в виде суммы 




где  представляет влияние только начальных условий, а влияние только граничного условия. Эти функции можно определить как решения уравнения (1), удовлетворяющие условиям 

                                                                                 (28’)
и

                                                                                   (28’’)

Очевидно, что сумма этих функций будет удовлетворять условиям (28). Докажем предварительно две леммы относительно функции  определяемой интегралом Пуассона, 

                                                        (29)
1. 
Если функция  является нечетной функцией, т.е. 


то функция (29)



обращается в нуль при 




При этом, конечно, предполагается, что интеграл, определяющий функцию  сходится, что имеет место, если  ограничена. Подынтегральная функция в интеграле 



нечетная относительно  так как является произведением нечетной функции на четную. Интеграл же от нечетной функции в пределах, симметричных относительно начала координат, равняется нулю; следовательно, 


что и доказывает лемму. 
2. 
Если функция  является четной функцией, т.е.




то производная функция  из формулы (29) равна нулю при 



для всех 
	В самом деле, 




так как при  подынтегральная функция нечетна, если четная. 

	Перейдем теперь к построению функции  удовлетворяющей условиям (28’).


	Введем вспомогательную функцию определенную на бесконечной прямой  и удовлетворяющую уравнению, а также условиям





 для 





Эту функцию, пользуясь леммой, можно определить при помощи начальной функции  совпадающей с  для  и являющейся нечетным продолжением  для  т.е. 


так что




Рассматривая значения функции  только в интересуюўей нас области  получим:


  при   

Пользуясь определением функции  будем иметь:



причем в первом интеграле сделана замена  и использовано равенство


Соединяя оба интеграла вместе, получим искомую функцию

               (30)


В виде, не содержащем вспомогательных функций. Заметим, что при  выражение в фигкурных скобках обращается в нуль и 


	Пользуясь леммой 2, нетрудно убедиться, что решение уравнения теплопроводности с однородным граничным условием второго рода  и начальным условием  представляется в виде 

                          (30’)
	Применим полученную формулу к решению задачи об остывании равномерно нагретого стержня, на границе которого поддерживается постоянная температура, которую мы примем равной нулю. Задача состоит в определении решения уравнения теплопроводности, удовлетворяющего условиям 




	Учитывая, что начальное условие задается не при  а при  вместо формулы (30) получим:

                          (31)
Разбивая интеграл на два слагаемых и вводя переменные


получим:

                                                                             (31’)
где


- интеграл ошибок. 

	Обратимся теперь к отысканию функции  представляющей вторую часть решения первой краевой задачи. 
	Пусть 


Функция

                                                                           (32)
Является решением уравнения теплопроводности, удовлетворяющим условиям


Отсюда следует, что функция

                                      (33)
и является искомой, так как она удовлетворяет тому же уравнению и условиям


   и  

Представим  в виде


где

                      (34)


является решением той же задачи, что и  при 


	По определению функция  имеет смысл только при  Продолжим определение этой функции, полагая 


  для  









Очевидно, что это определение согласуется со значением функции  при  и определенная таким образом функция будет удовлетворять уравнению теплопроводности для всех  при  Граничное значение этой функции (при ) является ступенчатой функцией, равной нулю при  и равной единице при  Функция  весьма часто встречается в приложениях и является вспомогательным звеном для нахождения функции 
	Рассмотрим вторую вспомогательную задачу, заключающуюся в нахождении решения уравнения теплопроводности со следующими начальными и граничными условиями:


Непосредственной проверкой нетрудно убедиться, что 



Вообще, если граничная функция  задается в виде ступенчатой функции 



то, рассуждая совершенно аналогично, получим, что решение краевой задачи с подобной функцией  может быть записано следующим образом:

            (35)
Пользуясь теоремой о конечном приращении, получим:

                                   (36)

для 

Обратимся теперь к задаче о нахождении решения  уравнения теплопроводности с нулевым начальным условием и граничным условием 




где произвольная кусочно-непрерывная функция. Приближенное решение этой задачи легко получить в виде (36), если функцию  заменить кусочно-постоянной функцией. Переходя к пределу при уменьшении интервалов постоянства вспомогательной функции, получим, что предел суммы (36) будет равен 



так как при 



Очевидно, что искомое решение  второй задачи должно быть равно 

                                                                      (37)

Мы не будем подробно останавливаться на правомерности предельного перехода и выяснении условий применимости этой формулы в отношении функции 
	Нетрудно убедится в том, что 



	Так5им образом, искомое решение в случае произвольной функции  может быть представлено в виде


или 

                              [footnoteRef:5]                         (38) [5:  Это представление решения первой краевой задачи с нулевыми начальными условиями дано здесь для удобства сравнения с решением той же задачи, полученными в гл VI, § 4 другим метод.] 


	Отметим, что в процессе получения формулы (38) мы нигде не пользовались специальными свойствами уравнения теплопроводности, кроме его линейности. Мы нигде не пользовались также аналитической формулой функции  а только тем, что она удовлетворяет граничным и начальным условиям


  для  


  для  
или 


Очевидно, что если мы имеем днло с решением какого-либо линейного дифференциального уравннения при граничном условии 



Нулевых начальных условиях и нулевых дополнительных граничных условиях, если такие имеют место (например, при ), то решение этой задачи может быть представлено в виде 

                                                                        (39)

где решение аналогичной краевой задачи при 



	Сформулированный здесь принцип, называемый принципом Дюгамеля, поеказывает, что основную трудность при решении краевых задач представляет постоянное граничное значение. Если краевая задача с постоянным граничным значением. Если краевая задача с постоянным граничным значением решена, то решение краевой задлачи с переменным граничным условием представляется формулой (39). Этим принципом часто пользуются при решении многих краевых задач, приводя решение только для постоянного граничного условия, не оговаривая, что решение краевой задачи с переменным  дается формулой (39). 
	Сумма функций 


дает решение первой краевой задачи для полубесконечной прямой для однородного уравнения. 
	Пользуясь формулой (27) п. § 3 и принципом нечетного продолжения, нетрудно убедиться в том, что решение неоднородного уравнения 



при нулевом начальном и нулевом граничном условии () дает формулой 

   (40)
Сумма 


дает решение первой краевой задачи 
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