Лекция Девятая
БИЛИНЕЙНЫЕ И КВАДРАТИЧНЫЕ ФОРМЫ
§ 1. Линейные формы

Определение 9.1.  Пусть  V – линейное пространство. Линейной формой (линейным функционалом) над V называется линейный оператор f, отображающий V в комплексную плоскость C.
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Множество линейных форм L (V, C) над V само является линейным пространством (см. утверждение 9.3), которое обозначается  и называется сопряженным пространством к пространству V, т.е. по определению 
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Справедлива следующая


Теорема 9.1 Пространство 
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Отметим, что для любого 
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Покажем, что так определенные функционалы 
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Во-первых, эти функционалы линейно независимы. Действительно, пусть 
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Отсюда согласно определению равенства двух операторов следует, что 
[image: image18.wmf]1122

(...)0

nn

gggx

a+a++a=

 для любого 
[image: image19.wmf]n

xV

Î

. Полагая в этом равенстве 
[image: image20.wmf]k

xe

=

, 
[image: image21.wmf]1,2,...,

kn

=

, получаем, воспользовавшись (9.1), что 
[image: image22.wmf]0

k

a=

, 
[image: image23.wmf]1,2,...,

kn

=

. Следовательно, функционалы 
[image: image24.wmf]12

,,...,

n

ggg

 линейно независимы.


Во-вторых, для любого функционала 
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Действительно, для любого 
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Далее в силу (9.2) получаем


[image: image31.wmf]11

()()()

nn

iiii

ii

gxgxgx

==

æö

=b=b

ç÷

ç÷

èø

åå

 для любого 
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Отсюда согласно определению равенства двух операторов имеем
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Итак, функционалы 
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Пусть 
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где
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Итак, доказано


утверждение 9.1 Если 
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Из формулы (9.4), как легко видеть, следует обратное


утверждение 9.2 В заданном базисе 
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Замечание 9.1 Числа 
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называются координатами линейной формы f  в биортогональном базисе.


Предположим, что  в пространстве Vn заданы два произвольных базиса 
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где 
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или согласно (9.5)
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Так как в этом равенстве вектор 
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Вывод 9.1 Таким образом, при переходе от базиса [e] к 
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 координаты линейной формы f  изменяются по формуле (9.6).

Замечание 9.2.  
Координаты линейной формы при изменении базиса преобразуются по такому же закону, как и элементы базиса (8.17)


§ 2. Билинейные формы в вещественном пространстве


Определение 10.2.  Пусть V – вещественное линейное пространство. Билинейной формой над V называется числовая функция 
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[image: image92.wmf](,)(,)(,)

AxyzAxzAyz

l+m=l+m

;

[image: image93.wmf](,)(,)(,)

AxyzAxyAxz

l+m=l+m

.

Пример 10.1 Если 
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Пример 10.2 В пространстве 
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Пример 10.3 В пространстве 
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Среди всех билинейных форм можно выделить следующие два подмножества.


Определение 10.3. Билинейная форма называется симметричной (кососимметричной), если для любых векторов 
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Справедливо следующее 


утверждение 10.3. Любую билинейную форму можно единственным образом представить в виде суммы симметричной и кососимметричной билинейных форм.

Доказательство Очевидно,
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Нетрудно убедиться, что 
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Пусть в вещественном линейном пространстве 
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матрицу с элементами 
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Определение 10.4. Матрица 
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Равенство (10.9), как легко видеть, можно записать в следующем матричном виде:
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Итак, получили


утверждение 10.4 Пусть в вещественном линейном пространстве 
[image: image147.wmf]n

V

 задан базис [e]. Тогда любая билинейная форма 
[image: image148.wmf](,)

Axy

 над 
[image: image149.wmf]n

V

 может быть однозначно представлена в базисе [e] следующим образом:


[image: image150.wmf],1

(,)

n

ijij

ij

Axyxy

=

=a

å


или


[image: image151.wmf](,)

T

x

Axy

éù

=

êú

¯

ëû



 EMBED Equation.3  [image: image152.wmf]e

y

A

éù

êú

¯

ëû

. #


Следствие 10.1 В фиксированном базисе [e] между билинейными формами и матрицами  
[image: image153.wmf]e

A

 билинейных форм в этом базисе существует взаимно-однозначное соответствие, которое устанавливается равенством (10.9).

Доказательство 1. Согласно определению матрицы билинейной формы каждой билинейной форме в базисе [e] ставится в соответствие единственная матрица.
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где 
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Доказательство. Согласно (10.10) имеем, что билинейная форма 
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где 
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Согласно (9.18) имеем
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Подставляя эти равенства в предыдущее соотношение, получаем:
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Отсюда, воспользовавшись дважды леммой 9.1, получаем утверждение теоремы. #


§ 3. Квадратичные формы в вещественном пространстве


Определение 10.5. Пусть 
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Утверждение 10.5. Полярная форма 
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Доказательство. Из определения билинейной формы, очевидно, имеем
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Отсюда в силу симметрии 
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которое и доказывает наше утверждение. #


Следствие 10.3. Между квадратичными формами и симметричными билинейными формами существует взаимно однозначное соответствие.


Замечание 10.3. Квадратичная форма 
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симметрична и приводит при 
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Определение 10.6. Матрица 
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 симметричной билинейной формы 
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Пусть 
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 – базис пространства 
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, тогда согласно утверждению 10.4 квадратичная форма в этом базисе может быть представлена следующим образом:
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причем матрица 
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 квадратичной формы в базисе [e], в силу следствия 10.2 всегда симметрична.


Очевидно, что матрица квадратичной формы при переходе к новому базису преобразуется по такому же закону, что и матрица соответствующей полярной билинейной формы, т.е. по формуле (10.11). Следовательно, ранг матрицы квадратичной формы не меняется при переходе к  новому базису, т.е. ранг матрицы квадратичной формы есть инвариант относительно преобразования базиса.


Определение 10.7. Число r, равное рангу матрицы 
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 квадратичной формы A в некотором базисе [e], называется рангом квадратичной формы.


Определение 10.8. Квадратичная форма 
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, определенная в пространстве 
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, называется невырожденной, если ранг квадратичной формы равен n – размерности пространства 
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; вырожденной, если ранг квадратичной формы меньше n.


2. Приведение квадратичной формы

к каноническому виду методом Лагранжа

Теорема 10.3 (Лагранжа). Всякая квадратичная форма 
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 в вещественном линейном пространстве 
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 при помощи невырожденного линейного преобразования переменных может быть приведена к диагональному (каноническому) виду
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где 
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Доказательство. Проведем методом математической индукции. При 
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[image: image261.wmf](,)

Axx

 при 
[image: image262.wmf]1

n

=

 имеет вид: 
[image: image263.wmf]22

11111

(,)

Axxxx

=a=l

.


Предположим теперь, что 
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Пусть 
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Пользуясь предположением индукции, покажем, что ее можно привести к каноническому виду невырожденным линейным преобразованием n переменных.


Естественно предположить, что квадратичная форма 
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, так как в противном случае, она уже имеет канонический вид с каноническими коэффициентами 
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Покажем, что с помощью невырожденного преобразования переменных квадратичную форму можно преобразовать так, что коэффициент при квадрате первой координаты вектора x, т.е. 
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[image: image272.wmf]11

0

a¹

, то искомое преобразование есть тождественное (очевидно, невырожденное). Если же 
[image: image273.wmf]11

0

a=

, но при некотором 
[image: image274.wmf]2

i

³

 отличен от нуля коэффициент при 
[image: image275.wmf]2

i

x

, т.е. 
[image: image276.wmf]0

ii

a¹

, то в этом случае достаточно изменить нумерацию переменных, т.е. сделать преобразование вида
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Это преобразование, очевидно, невырожденное. Остается рассмотреть случай, когда 
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детерминант которого, очевидно, равен 2 при 
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Таким образом, полученная квадратичная форма A содержит 
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 с коэффициентом 
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 отличным от нуля; значит, как уже показано выше, существует невырожденное линейное преобразование переменных, приводящее квадратичную форму к виду, в котором коэффициент  при  квадрате  первой  координаты  вектора  x  отличен  от нуля.


Итак, будем считать, что в соотношении (10.13) коэффициент 
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Преобразуем правую часть этого равенства следующим образом:
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Обозначим 

[image: image307.wmf](,)

Bxx


[image: image308.wmf]11

,2

n

ijij

ij

xx

=

=a-a

å



 EMBED Equation.3  [image: image309.wmf]2

1

12

2

1111

...

n

n

xx

æö

a

a

++

ç÷

aa

èø

.


Очевидно, 
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 является квадратичной формой от 
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В нем новые переменные выражены через старые. Запишем это преобразование в привычном для нас виде, выражающем старые переменные через новые 
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(10.14)


Очевидно, что это преобразование невырожденное. После его выполнения квадратичная форма 
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По индуктивному предположению существует невырожденное преобразование:
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приводящее квадратичную форму B к диагональному виду
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Для нашей исходной квадратичной формы
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Определитель этого преобразования
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Следовательно, преобразование (10.15) невырожденное После выполнения этого преобразования квадратичная форма 
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Таким образом, после выполнения конечного числа невырожденных линейных преобразований, которое можно заменить одним невырожденным преобразованием – их произведением (следует из определения произведения операторов и свойств 3 утверждения 9.8), первоначальную квадратичную форму (10.13) приведем к каноническому виду. #


Замечание 10.4. Метод доказательства теоремы дает также конструктивный метод приведения квадратичной формы к каноническому виду. В доказательстве выделили только один квадрат линейного выражения и сослались затем на предположение индукции. В конкретном примере для приведения квадратичной формы к каноническому виду необходимо процесс выделения квадратов продолжать до тех пор, пока не придем к форме с нулевыми коэффициентами, или к форме от одной переменной.


Замечание 10.5. Согласно теореме Лагранжа можно найти невырожденное линейное преобразование координат 
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 EMBED Equation.3  [image: image327.wmf]C
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 с матрицей преобразования C 
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 – старые, а 
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 – новые координаты вектора 
[image: image330.wmf]x

), приводящее квадратичную форму к каноническому виду (10.12). Тогда согласно (9.18) матрица C является матрицей перехода от старого (заданного) базиса [e] к новому базису 
[image: image331.wmf][]
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, в котором квадратичная форма имеет канонический вид (10.12). Этот базис находится по формулам (9.17).


Базис, в котором квадратичная форма имеет канонический вид, называется каноническим. Нетрудно заметить, что канонический базис определен неоднозначно и в общем случае не является ортонормированным. 


Согласно этому замечанию, теорему Лагранжа можно сформулировать иначе: для каждой квадратичной формы, определенной в пространстве 
[image: image332.wmf]n

V

, существует канонический базис.
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