
Лекция № 9 ДВУМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ 

 

Функцией распределения двумерной случайной величины (Х, Y) 

называется вероятность совместного выполнения двух событий {Х < х} и {Y < 

у}: 

  }{}{P),( yYxXyxF   . (1.45) 

Свойства двумерной функции распределения: 

1. 0  F(x, y)  1. 

2. F(x, +) = F1(x); F(+ , y) = F2(у); F(+ ,+) = 1. 

3. F(- , y) = F(x, - ) = F(- , - ) = 0. 

4. F(x1, y)  F(x2, y),   если x2 > x1; 

   F(x, y1)  F(x, y2),    если y2 > y1. 

Функция распределения может задаваться для непрерывных и дискретных  

случайных величин. 

Для непрерывных случайных величин существует плотность распределения 

или дифференциальный закон распределения: 
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Свойства двумерной плотности. 

1. f(x, y)  0. 
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Для дискретных случайных величин (X, Y) закон распределения задается 

матрицей вероятностей, содержащей вероятности pij появления всех 

возможных пар значений (xi, yj): 

 pij = P(X =xi   Y = yj), (1.51) 

удовлетворяющих условию 
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Одномерные ряды вероятностей составляющих X, Y определяются по формулам 
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Условным законом распределения называется распределение одной случайной 

величины, найденное при условии, что другая случайная величина приняла 

определенное значение. 

Условные плотности для непрерывных составляющих X и Y определяются по 

формулам 

 f(x/y) = f(x, y)/f2(y),    f2(y) 0;  (1.55) 

 f(y/x) = f(x, y)/f1(x),    f1(x) 0. (1.56) 

Условные ряды вероятностей для дискретных составляющих Х и Y 

определяются по формулам 

 pi/j = P(X = xi/Y = yj) = pij/P(Y = yj),     i = 1, ..., N; (1.57) 

 pj/i = P(Y = yj/X = xi) = pij/P(X = xi),     j = 1, ..., M. (1.58) 

Теорема умножения законов распределений: 

для непрерывных величин - 

 f(x, y) = f1(x)  f(y/x) = f2(y)f(x/y) (1.59) 

для дискретных величин - 

 * / * /ij i j i j i jp p p p p    . (1.60) 



Условия независимости случайных величин: 

для непрерывных –                        f(x, y) = f1(x)f2(y),                    (1.61) 

для дискретных -                              pij = pi  pj ,   для    i, j.                (1.62) 

Пример 9.1. Двумерная случайная величина (X, Y) распределена по закону, 

приведенному в таблице: 

yj xi 

 x1 = 0 x2 = 1 

y1 = -1 0,1 0,2 

y2 = 0 0,2 0,3 

y3 = 1 0 0,2 

Определить одномерные ряды вероятностей величин X и Y, условный ряд 

вероятностей величины X при условии, что Y = 0. Исследовать зависимость 

случайных величин X и Y. 

Решение. Определим ряды вероятностей X и Y по формулам (1.53) и (1.54), т.е. 

выполним суммирование по столбцам и по строкам: 

xi 0 1  yj -1 0 1 

pi* 0,3 0,7  p*j 0,3 0,5 0,2 

 

Условный ряд X при Y = 0 получаем по формуле (1.57): 

xi 0 1 

pi/Y=0 0,4 0,6 

 

Величины X и Y зависимы, так как 

P(X = 0, Y = 0)  P(X = 0)  P(Y = 0), 

0,2  0,3  0,5. 

 

  



ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ДВУМЕРНЫХ  ВЕЛИЧИН 

 

Рассмотрим основные числовые характеристики двумерной случайной 

величины (X, Y). 

Начальный момент порядка k+s равен математическому ожиданию 

произведения Xk и Ys: 
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Центральный момент порядка k+s равен математическому ожиданию 

произведения центрированных величин kX


 и SY


: 
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где   
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Расчетные формулы: 
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где  pij - элементы матрицы вероятностей дискретной величины (X, Y); 

f(x, y)-совместная плотность вероятности непрерывной величины (X, Y). 

Рассмотрим наиболее часто используемые начальные и центральные моменты: 

0,0(x, y) = 0,0(x, y) = 1;                          1,0(x, y) = mx;        0,1(x, y) = my; 

1,0(x, y) = 0,1(x, y) = 0;                           2,0(x, y) = 2(x);   0,2(x, y) = 2(y); 

2,0(x, y) = Dx;     0,2(x, y) = Dy;    1,1(x, y) = Kxy. 



Корреляционный момент Kxy характеризует степень линейной зависимости 

величин X и Y и рассеивание относительно точки (mx, my). 

Вычислить Kxy можно и через начальные моменты: 

 Kxy = 1,1(x, y) - mxmy. (1.67) 

Коэффициент корреляции rxy характеризует степень линейной зависимости 

величин: 
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Для любых случайных величин |rxy|  1. 

Если величины X и Y независимы, то rxy = 0. 

Пример 10.1  Определить  коэффициент  корреляции  величин  X  и  Y    (cм. 

пример 9.1). 

Решение. Определим математические ожидания величин X и Y по формуле 

(1.65): 
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Найдем значение Kxy по формуле (1.67): 

Kxy =
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+1(-1)0,2 + 100,3 + 110,2 - 0,7(-0,1) = 0,07.  

Определим дисперсии величин X и Y по формуле (1.66): 
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Значение  коэффициента  корреляции rxy вычислим по формуле (1.68): 
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Пример 10.2 Двумерная случайная величина равномерно распределена в 

области D, ограниченной прямыми X = 0, Y = 0 и X + Y = 4. Определить 

коэффициент корреляции величин X и Y. 

Решение. Запишем в аналитической форме совместную плотность вероятности: 
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Определим c, используя условие нормировки (1.49): 
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Найдем математическое ожидание и дисперсию величины X по формулам (1.65) 

и (1.66) соответственно: 
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Так как область D симметрична относительно осей координат, то величины X и 

Y будут иметь одинаковые числовые характеристики:  

mx = my = 4/3,    Dx = Dy = 8/9. 

Определим корреляционный момент Kxy по формуле (1.67): 
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Коэффициент корреляции величин X и Y будет равен (1.68):  
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