
Модуль: КРИВЫЕ ВТОРОГО ПОРЯДКА 

Уравнения эллипса, параболы и гиперболы в полярной системе 

координат и касательных к кривым второго порядка 

 

Аннотация 

   В данной лекции приводится метод получения уравнения линий второго 

порядка в полярных координатах. А также выводятся уравнения касательных 

эллипса, параболы и гиперболы 

    Базовые фразы: коническое сечение, полярная система координат, 

касательная, оптическое свойство. 

     Уравнения эллипса, параболы и гиперболы в полярной системе 

координат  

Сначала рассмотрим уравнение окружности радиуса R . Если полюс 

находится в центре, а полярная ось выбрана произвольно, уравнение имеет вид 

R  . Пусть дана линия L , определяющая эллипс (отличный от окружности), 

гиперболу или параболу. Обозначим фокус через F , соответствующую 

директрису через D , расстояние от фокуса F  до директрисы D  через p , а 

эксцентриситет через e . Выберем полярную систему координат так, чтобы 

полюс совпал с F , а полярная ось была перпендикулярна директрисе и 

направлена от нее к фокусу. Для точки M  на линии L , согласно определению, 

справедливо отношение: 
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Подставляя выражения FM   , cosMP PN NM p     в уравнение 

(1), получим уравнение эллипса или параболы в полярных координатах: 
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Рисунок 1. 



               

 

 

Рисунок 2 

     В случае, когда линия L является гиперболой, для обеих ветвей 

получаются отдельные уравнения. Обозначим правый фокус через F , 

директрису через D , расстояние от фокуса F  до директрисы D  через p , 

эксцентриситет через e . Пусть 1W  — ветвь гиперболы, соответствующая 

фокусу F  (правая ветвь), а 2W   — другая ветвь (левая). Аналогичными 

рассуждениями получим, что уравнение ветви 1W   имеет вид (2). Для ветви 2W  

уравнение имеет вид (1). Теперь, из отношении FM   , 



cosMP MN PN p      уравнение ветви 
2W  гиперболы примет вид  
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     Таким образом, уравнение гиперболы в полярных координатах: 
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где знак "+" соответствует правой ветви, знак "-" — левой ветви. 

Примечание. В формулах (2) и (3) знаменатель не обращается в ноль, так 

как в случае эллипса, так как 0 1e  , имеем 1 cos 0e   . В случае параболы, 

поскольку 1e  , также выполняется   1 cos 0    при (0;2 )  . В случае 

гиперболы для точек на ветви 
1W  угол 
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следует, что 0 cos 1e   или cos 0e   . Для точек на ветви 2W  угол 
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, в результате чего выполняется cos 0e    va 

cos 1e   . 

Уравнения касательных и оптические свойства эллипса, параболы и 

гиперболы 

     Пусть эллипс задан каноническим уравнением: 
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Составим уравнение касательной к нему в точке  0 0;x y . Если разрешить 

уравнение эллипса относительно y , оно распадается на две части: 
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     Используя формулу касательной к графику функции в заданной точке и 

вычисляя производные: 
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     В обоих случаях получаем уравнение касательной: 
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     Аналогично выводятся уравнения касательных для гиперболы и 

параболы: 

     Для гиперболы: 0 0
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Примеры 

1. При каких необходимых и достаточных условиях прямая 

y kx m   касается эллипса 
2 2
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2. Условия, при которых прямая y x m    

1. касается эллипса 
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2. пересекает эллипс 

3. не пересекает эллипс? 

3. Составьте уравнения касательных к эллипсу 1
1625
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проходящих через точку )4,10(N . 

4. Найдите касательные к эллипсу 1
916
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, параллельные 

прямой 01 yx . 

5. Составьте уравнения общих касательных к эллипсам ,1
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6. Напишите уравнение касательной к гиперболе 1
45

22


yx

 в 

точке (5, -4). 

7. Напишите уравнение касательной к гиперболе 822  yx   в 

точке )1,3( M . 

8. Напишите уравнения касательных к гиперболе 1
4

2
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y
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проходящих через точку )4,1(M . 

9. Для гиперболы 1
369
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 составьте уравнения касательных, 

проведенных: 

1. параллельно прямой  0173  yx  

2. перпендикулярно прямой 01152  yx  

10. Найдите необходимое и достаточное условие для того, чтобы 

прямая 0 CByAx  была касательной к гиперболе 1
2
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11. Найдите произведение расстояний от фокусов гиперболы 
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  до произвольной её касательной. 

12. Составьте уравнение касательной к параболе xy 42  , 

проведенной в точке )6,9(M . 

13. Дано уравнение касательной 093  yx , проведенной к 

параболе pxy 22  . Составьте уравнение параболы. 

14. Найдите необходимое и достаточное условие для касания 

прямой 0 CByAx  к параболе pxy 22  . 

15. Напишите уравнение прямой, параллельной прямой bkxy    

и касающейся параболы pxy 22  . 

16. Определите общие касательные к параболе xy 42   и эллипсу 

1
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Вопросы для самопроверки 

1. Выведите уравнение эллипса в полярных координатах. 

2. Выведите уравнение параболы в полярных координатах. 

3. Выведите уравнение гиперболы в полярных координатах. 

4. Выведите уравнение касательной к эллипсу. 

5. Выведите уравнение касательной к параболе. 

6. Выведите уравнение касательной к гиперболе. 

 

Тестовые вопросы по теме 

1. Укажите правильное уравнение касательной к окружности 2 2 1x y   в 

точке 
0(1,0)M  



A) 1x    B) 1x      C) 1y     D)  1y    

2. Уравнение касательной к гиперболе 
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3. Уравнение касательной к параболе 2 2y px  в точке 
0 0 0( , )M x y . 
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4. Уравнение касательной к эллипсу 
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5. Какая линия второго порядка задана уравнением 
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A) эллипс B) гипербола C) парабола D) окружность 

6. Какая линия второго порядка задана уравнением 
6

1 cos






? 

A) парабола B) гипербола C) эллипс D) окружность 

7. Какая линия второго порядка задана уравнением 
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8. Найдите точку, при котором для эллипса 
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равен 6. 
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9. Найдите точку, при котором для гиперболы 
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10. Найдите точку, при котором для параболы 
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ГЛОССАРИЙ (GLOSSARY) 

     Коническое сечение — сечение, полученное при пересечении 

кругового конуса плоскостью, не проходящей через его вершину. Если 

плоскость перпендикулярна оси конуса — получается окружность, если 

параллельна образующей конуса — парабола, если параллельна оси конуса — 

гипербола, в остальных случаях — эллипс. 

     Касательная к линии второго порядка — прямая 

неасимптотического направления, имеющая с линией второго порядка 

единственную общую точку. 

     Директриса эллипса (гиперболы), соответствующая фокусу — 

прямая, перпендикулярная фокальной оси, находящаяся на расстоянии от 

центра и расположенная с той же стороны от центра, что и фокус. 


