9.3. Уравнения Максвелла
Четыре уравнения, соответствующие нашим (модифицированным) утверждениям, называются уравнениями Максвелла в интегральной форме.
Выпишем их все рядом еще раз:
Чтобы получить уравнения Максвелла в среде, надо произвести замену:
,
то есть указать связь (так называемые «материальные» уравнения) между напряженностями и индукциями: и
и дополнить систему уравнением закона Ома
.
Отметим, что приведенными выше простейшими соотношениями можно пользоваться не всегда. Ситуация заметно сложнее в присутствии таких веществ как сегнетоэлектрики, пьезоэлектрики, ферромагнетики, вещества анизотропные и тому подобное. Здесь наша цель показать, как формируется полная система уравнений, позволяющая (с учетом начальных и граничных условий, разумеется) рассчитать электромагнитное поле.
От уравнений в интегральной форме можно с помощью теорем векторного анализа перейти к уравнениям в дифференциальной форме, связывающим значения полей и
и их пространственных и временных производных со значениями плотностей заряда и тока. Этими уравнениями мы пользоваться не будем, но все же приведем их хотя бы как часть шутки, опубликованной в одном из журналов в дни юбилея Максвелла:
«И сказал Бог:
И стал свет».
Непонятные значки div (читается «дивергенция») и rot (читается «ротор») — это особые операции дифференцирования, выполняемые над векторными полями. Дивергенция — по латыни «расхождение». Эта операция описывает конфигурацию силовых линий типа «ежа», расходящихся из точек, где имеются электрические заряды. Слово «ротор» в переводе не нуждается, оно явно ассоциируется с вращением. Эта операция описывает вихревые поля (кольцеобразные — замкнутые силовые линии) вокруг их источников — токов или других полей, меняющихся во времени.
Четыре интегральных уравнения и четыре дифференциальных эквивалентны. Максвелл показал, что все явления электромагнетизма можно полностью описать этими четырьмя уравнениями, являющимися обобщением экспериментальных фактов.
В приведенной шутке упоминался свет. Действительно, свет — это электромагнитное излучение определенного диапазона частот. Предсказание электромагнитных волн стало одним из величайших достижений теории Максвелла. Представим себе, что заряды и токи отсутствуют. Посмотрим на уравнения Максвелла в дифференциальной форме. Видно, что если поля не статические, но зависят от времени, то имеется вихревое электрическое и магнитные поля (соответствующие роторы отличны от нуля). Распространение полей без зарядов и токов — это и есть электромагнитные волны. И можно углядеть в уравнениях намек на скорость их распространения: туда входит комбинация e0m0, через которую может быть выражена скорость света в вакууме (см. (6.3))
Но об этом — позже, в следующей части нашего курса.
В заключение же этой части процитируем слова Г. Герца об уравнениях Максвелла:
«Трудно избавиться от чувства, что эти математические формулы живут независимой жизнью и обладают своим собственным интеллектом, что они мудрее, чем мы сами, мудрее даже, чем их первооткрыватели, и что мы извлекаем из них больше, чем было заложено в них первоначально».
Пример использования уравнений Максвелла
Определить величину магнитного поля в зазоре конденсатора как функцию r расстояния от оси симметрии (рис. 9.13)
|
Рис. 9.13. Конденсатор с круглыми пластинами в процессе зарядки
Решение
Запишем уравнение (9.13) для контура, показанного на Рис. 9.3 штрихованной линией. Интегрируя, получим
или
Очевидно, что магнитное поле не равно нулю только благодаря наличию меняющегося со временем электрического поля. В свою очередь, изменение электрического поля обусловлено увеличением заряда на обкладках конденсатора. Эту связь получим из соотношений
Окончательно находим
Согласно полученной формуле,
что явно неверно. В чем ошибка?
ОТВЕТ: формула справедлива только при .
Дополнительная информация
http://www.physchem.chimfak.rsu.ru/Source/History/Persones/Maxwell.html — Джеймс Клерк Максвелл (1831–1879);
http://edinburgh.ru/lichnosti/james-clerk-maxwell — Максвелл — создатель классической электродинамики;
http://www-history.mcs.st-and.ac.uk/Mathematicians/Maxwell.html — Максвелл;
http://ивтб.рф/matan/3/13.htm — дивергенция, ротор;
http://bourabai.kz/hertz/index.htm — Генрих Герц;
http://micro.magnet.fsu.edu/optics/timeline/people/hertz.html — Генрих Рудольф Герц (1857–1894);
http://people.seas.harvard.edu/~jones/cscie129/nu_lectures/lecture6/hertz/Hertz_exp.html — Герц, эксперименты Герца.