9.3. Уравнения Максвелла
Четыре уравнения, соответствующие нашим (модифицированным) утверждениям, называются уравнениями Максвелла в интегральной форме.
Выпишем их все рядом еще раз:
Чтобы получить уравнения Максвелла в среде, надо произвести замену:
,
то есть указать связь (так называемые «материальные» уравнения) между напряженностями и индукциями:
и
и дополнить систему уравнением закона Ома
.
Отметим, что приведенными выше простейшими соотношениями можно пользоваться не всегда. Ситуация заметно сложнее в присутствии таких веществ как сегнетоэлектрики, пьезоэлектрики, ферромагнетики, вещества анизотропные и тому подобное. Здесь наша цель показать, как формируется полная система уравнений, позволяющая (с учетом начальных и граничных условий, разумеется) рассчитать электромагнитное поле.
От уравнений в интегральной форме можно с помощью теорем векторного анализа перейти к уравнениям в дифференциальной форме, связывающим значения полей
и
и их пространственных и временных производных со значениями плотностей заряда и тока. Этими уравнениями мы пользоваться не будем, но все же приведем их хотя бы как часть шутки, опубликованной в одном из журналов в дни юбилея Максвелла:
«И сказал Бог:

И стал свет».
Непонятные значки div (читается «дивергенция») и rot (читается «ротор») — это особые операции дифференцирования, выполняемые над векторными полями. Дивергенция — по латыни «расхождение». Эта операция описывает конфигурацию силовых линий типа «ежа», расходящихся из точек, где имеются электрические заряды. Слово «ротор» в переводе не нуждается, оно явно ассоциируется с вращением. Эта операция описывает вихревые поля (кольцеобразные — замкнутые силовые линии) вокруг их источников — токов или других полей, меняющихся во времени.
Четыре интегральных уравнения и четыре дифференциальных эквивалентны. Максвелл показал, что все явления электромагнетизма можно полностью описать этими четырьмя уравнениями, являющимися обобщением экспериментальных фактов.
В приведенной шутке упоминался свет. Действительно, свет — это электромагнитное излучение определенного диапазона частот. Предсказание электромагнитных волн стало одним из величайших достижений теории Максвелла. Представим себе, что заряды и токи отсутствуют. Посмотрим на уравнения Максвелла в дифференциальной форме. Видно, что если поля не статические, но зависят от времени, то имеется вихревое электрическое и магнитные поля (соответствующие роторы отличны от нуля). Распространение полей без зарядов и токов — это и есть электромагнитные волны. И можно углядеть в уравнениях намек на скорость их распространения: туда входит комбинация e0m0, через которую может быть выражена скорость света в вакууме (см. (6.3))

Но об этом — позже, в следующей части нашего курса.
В заключение же этой части процитируем слова Г. Герца об уравнениях Максвелла:
«Трудно избавиться от чувства, что эти математические формулы живут независимой жизнью и обладают своим собственным интеллектом, что они мудрее, чем мы сами, мудрее даже, чем их первооткрыватели, и что мы извлекаем из них больше, чем было заложено в них первоначально».
Пример использования уравнений Максвелла
Определить величину магнитного поля в зазоре конденсатора как функцию r расстояния от оси симметрии (рис. 9.13)
|
|
Рис. 9.13. Конденсатор с круглыми пластинами в процессе зарядки
Решение
Запишем уравнение (9.13) для контура, показанного на Рис. 9.3 штрихованной линией. Интегрируя, получим
![]()
или
Очевидно, что магнитное поле не равно нулю только благодаря наличию меняющегося со временем электрического поля. В свою очередь, изменение электрического поля обусловлено увеличением заряда на обкладках конденсатора. Эту связь получим из соотношений
![]()
Окончательно находим
![]()
Согласно полученной формуле,
![]()
что явно неверно. В чем ошибка?
ОТВЕТ: формула справедлива только при
.
Дополнительная информация
http://www.physchem.chimfak.rsu.ru/Source/History/Persones/Maxwell.html — Джеймс Клерк Максвелл (1831–1879);
http://edinburgh.ru/lichnosti/james-clerk-maxwell — Максвелл — создатель классической электродинамики;
http://www-history.mcs.st-and.ac.uk/Mathematicians/Maxwell.html — Максвелл;
http://ивтб.рф/matan/3/13.htm — дивергенция, ротор;
http://bourabai.kz/hertz/index.htm — Генрих Герц;
http://micro.magnet.fsu.edu/optics/timeline/people/hertz.html — Генрих Рудольф Герц (1857–1894);
http://people.seas.harvard.edu/~jones/cscie129/nu_lectures/lecture6/hertz/Hertz_exp.html — Герц, эксперименты Герца.


