Молекулярная физика и термодинамика
1. Идеальный газ 1.5. Смеси газов
Скачать Содержание

1.5. Смеси газов

Возникает естественный вопрос: какими уравнениями описываются смеси идеальных газов? Ведь с чистыми газами нам редко приходится встречаться в природе. Например, наша естественная среда обитания — воздух — состоит из азота N2 (78,08 %), кислорода O2 (20,95 %), инертных газов (0,94 %), углекислого газа СO2 (0,03 %).

Пусть в некотором объеме V при некоторой температуре Т содержится смесь газов (которые мы будем нумеровать
индексом i ). Роль каждого компонента смеси будем характеризовать массовой долей:

 

(1.20)

где miмасса i-го компонента. Наша задача написать уравнение, подобное уравнению Клапейрона Менделеева, и разобраться с эффективным числом степеней свободы смеси, где могут содержаться и одноатомные, и многоатомные молекулы.

Прежде всего, заметим, что мы рассматриваем идеальные газы. Молекулы не взаимодействуют друг с другом, и потому каждый компонент не мешает любому другому «жить» в том же общем сосуде. Различные газы в сосуде, в силу их предполагаемой идеальности, просто «не замечают» друг друга. Поэтому для каждого из компонентов справедливо одно и то же уравнение Клапейрона Менделеева:

 

(1.21)

где ni число молей вещества в i -м компоненте. Полное число n молей в смеси равно сумме числа молей ni в каждом из компонентов:

Аналогично, полная масса смеси равна сумме масс каждого из компонентов

и естественно определить молярную массу смеси m как массу одного моля смеси:

Введем величину, называемую парциальным давлением.

Парциальное давление pi — это давление, оказываемое i-м компонентом газовой смеси.

Имеет место закон Дальтона для газовой смеси:

Полное давление газовой смеси равно сумме всех парциальных давлений

 

(1.22)

Суммируя левые и правые части (1.21), приходим к стандартной форме уравнения Клапейрона — Менделеева

 

(1.23)

где m, μ, n определяются из условия конкретной задачи. Например, если заданы массовые доли компонентов, то молярную массу смеси находим из соотношения

 

(1.24)

Внутренняя энергия Ui i-го компонента смеси определяется в соответствии с формулами (1.16) и (1.19):

 

(1.25)

С одной стороны, полная внутренняя энергия смеси равна сумме энергий каждого компонента:

 

(1.26)

С другой стороны, запишем стандартное выражение вида (1.25)

 

(1.27)

Сравнивая (1.26) и (1.27), получаем формулу для показателя адиабаты смеси

 

(1.29)

Найдя массу моля и показатель адиабаты смеси, мы можем пользоваться всеми формулами, полученными ранее для «чистых» идеальных газов. 

Пример. Дана смесь кислорода O2 (компонент 1) и аргона Ar (компонент 2), причем количества вещества обоих компонентов одинаковы n1 = n2. Найдем показатель адиабаты смеси.

Показатель адиабаты двухатомного кислорода равен

а одноатомного аргона

Поэтому для смеси газов на основании (1.29) получаем