Оптика и волны
2. Волновые процессы 2.6. Электромагнитные волны
Скачать Содержание

2.6. Электромагнитные волны

Любой колебательный контур излучает энергию. Изменяющееся электрическое поле возбуждает в окружающем пространстве переменное магнитное поле, и наоборот. Математические уравнения, описывающие связь магнитного и электрического полей, были выведены Максвеллом и носят его имя. Запишем уравнения Максвелла в дифференциальной форме для случая, когда отсутствуют электрические заряды () и токи (j = 0):

 

(2.92)

где

 

Величины  и  — электрическая и магнитная постоянные, соответственно, которые связаны со скоростью света в вакууме соотношением

Постоянные  и  характеризуют электрические и магнитные свойства среды, которую мы будем считать однородной и изотропной.

В отсутствие зарядов и токов невозможно существование статических электрического и магнитного полей. Однако переменное электрическое поле возбуждает магнитное поле, и наоборот, переменное магнитное поле создает электрическое поле. Поэтому имеются решения уравнений Максвелла в вакууме, в отсутствие зарядов и токов, где электрические и магнитные поля оказываются неразрывно связанными друг с другом. В теории Максвелла впервые были объединены два фундаментальных взаимодействия, ранее считавшихся независимыми. Поэтому мы говорим теперь об электромагнитном поле.

Колебательный процесс в контуре сопровождается изменением окружающего его поля. Изменения, происходящие в окружающем пространстве, распространяются от точки к точке с определенной скоростью, то есть колебательный контур излучает в окружающее его пространство энергию электромагнитного поля.

Электромагнитная волна — это распространяющееся в пространстве электромагнитное поле, в котором напряженность электрического и индукция магнитного полей изменяются по периодическому закону.

При строго гармоническом изменении во времени векторов  и  электромагнитная волна называется монохроматической.

Получим из уравнений Максвелла волновые уравнения для векторов  и .

 

Волновое уравнение для электромагнитных волн

Как уже отмечалось в предыдущей части курса, ротор (rot) и дивергенция (div) — это некоторые операции дифференцирования, производимые по определенным правилам над векторами. Ниже мы познакомимся с ними поближе.

Возьмем ротор от обеих частей уравнения

При этом воспользуемся доказываемой в курсе математики формулой:

где   — введенный выше лапласиан. Первое слагаемое в правой части равно нулю в силу другого уравнения Максвелла:

Получаем в итоге:

 

(2.93)

Выразим rotB через электрическое поле с помощью уравнения Максвелла:

 

(2.94)

и используем это выражение в правой части (2.93). В результате приходим к уравнению:

 

(2.95)

Учитывая связь

и вводя показатель преломления среды

запишем уравнение для вектора напряженности электрического поля в виде:

 

(2.96)

Сравнивая с (2.69), убеждаемся, что мы получили волновое уравнение, где v фазовая скорость света в среде:

 

(2.97)

Взяв ротор от обеих частей уравнения Максвелла

и действуя аналогичным образом, придем к волновому уравнению для магнитного поля:

 

(2.98)

Полученные волновые уравнения для  и  означают, что электромагнитное поле может существовать в виде электромагнитных волн, фазовая скорость которых равна

Видео 2.7 Измерение скорости света

В отсутствие среды (при ) скорость электромагнитных волн совпадает со скоростью света в вакууме.

 

Основные свойства электромагнитных волн

Рассмотрим плоскую монохроматическую электромагнитную волну, распространяющуюся вдоль оси х:

 

(2.99)

Возможность существования таких решений следует из полученных волновых уравнений. Однако напряженности электрического и магнитного полей не являются независимыми друг от друга. Связь между ними можно установить, подставляя решения (2.99) в уравнения Максвелла. Дифференциальную операцию rot, применяемую к некоторому векторному полю А можно символически записать как детерминант:

 

(2.100)

Подставляя сюда выражения (2.99), зависящие только от координаты x, находим:

 

(2.101)

Дифференцирование плоских волн по времени дает:

 

(2.102)

Тогда из уравнений Максвелла следует:

 

(2.103)

Отсюда следует, во-первых, что электрическое и магнитное поля колеблются в фазе:

Далее, ни у , ни у  нет компонент параллельных оси х:

Иными словами и в изотропной среде,

электромагнитные волны поперечны: колебания векторов электрического и магнитного полей происходят в плоскости, ортогональной направлению распространения волны.

Видео 2.8 Поперечность электромагнитной волны.

Видео 2.9 Поляризация электромагнитной волны. Длина волны 3 см.

Видео 2.10 Поляризатор и анализатор для дециметровой волны.

Тогда можно выбрать координатные оси так, чтобы вектор  был направлен вдоль оси у (рис. 2.27):

Рис. 2.27. Колебания электрического и магнитного полей в плоской электромагнитной волне

В этом случае уравнения (2.103) приобретают вид:

 

(2.104)

Отсюда следует, что вектор  направлен вдоль оси z:

Иначе говоря, векторы электрического и магнитного поля ортогональны друг другу и оба — направлению распространения волны. С учетом этого факта уравнения (2.104) еще более упрощаются:

 

(2.105)

Отсюда вытекает обычная связь волнового вектора, частоты и скорости:

 

(2.106)

а также связь амплитуд колебаний полей:

 

(2.107)

Отметим, что связь (2.107) имеет место не только для максимальных значений (амплитуд) модулей векторов напряженности электрического и магнитного поля волны, но и для текущих — в любой момент времени.

Итак, из уравнений Максвелла следует, что электромагнитные волны распространяются в вакууме со скоростью света. В свое время этот вывод произвел огромное впечатление. Стало ясно, что не только электричество и магнетизм являются разными проявлениями одного и того же взаимодействия. Все световые явления, оптика, также стали предметом теории электромагнетизма. Различия в восприятии человеком электромагнитных волн связаны с их частотой или длиной волны.

Шкала электромагнитных волн представляет собой непрерывную последовательность частот (и длин волн) электромагнитного излучения. Теория электромагнитных волн Максвелла позволяет установить, что в природе существуют электромагнитные волны различных длин, образованные различными вибраторами (источниками). В зависимости от способов получения электромагнитных волн их разделяют на несколько диапазонов частот (или длин волн).

Видео 2.11 Перенос энергии и импульса электромагнитной волной

На рис. 2.28 представлена шкала электромагнитных волн.

Рис. 2.28. Шкала электромагнитных волн

Видно, что диапазоны волн различных типов перекрывают друг друга. Следовательно, волны таких длин можно получить различными способами. Принципиальных различий между ними нет, поскольку все они являются электромагнитными волнами, порожденными колеблющимися заряженными частицами.

Уравнения Максвелла приводят также к выводу о поперечности электромагнитных волн в вакууме (и в изотропной среде): векторы напряженности электрического и магнитного полей ортогональны друг другу и направлению распространения волны.

 

Дополнительная информация

http://www.femto.com.ua/articles/part_1/0560.html – Волновое уравнение. Материал из Физической Энциклопедии.

http://fvl.fizteh.ru/courses/ovchinkin3/ovchinkin3-10.html – Уравнения Максвелла. Видеолекции.

http://elementy.ru/trefil/24 – Уравнения Максвелла. Материал из «Элементов».

http://nuclphys.sinp.msu.ru/enc/e092.htm – Очень кратко об уравнениях Максвелла.

http://telecomclub.org/?q=node/1750 – Уравнения Максвелла и их физический смысл.

http://principact.ru/content/view/188/115/ – Кратко об уравнениях максвелла для электромагнитного поля.

 

Эффект Доплера для электромагнитных волн

Пусть в некоторой инерциальной системе отсчета К распространяется плоская электромагнитная волна. Фаза волны имеет вид:

 

 

(2.108)

Наблюдатель в другой инерциальной системе отсчета К', движущейся относительно первой со скоростью V вдоль оси x, также наблюдает эту волну, но пользуется другими координатами и временем: t', r'. Связь между системами отсчета дается преобразованиями Лоренца:

 

 

(2.109)

Подставим эти выражения в выражение для фазы , чтобы получить фазу волны в движущейся системе отсчета:

 

 

(2.110)

Это выражение можно записать как

 

 

(2.111)

где и  — циклическая частота и волновой вектор относительно движущейся системы отсчета. Сравнивая с (2.110), находим преобразования Лоренца для частоты и волнового вектора:

 

 

(2.112)

Для электромагнитной волны в вакууме

 

Пусть направление распространения волны составляет в первой системе отсчета угол с осью х:

 

Тогда выражение для частоты волны в движущейся системе отсчета принимает вид:

 

 

(2.113)

Это и есть формула Доплера для электромагнитных волн.

Если , то наблюдатель удаляется от источника излучения и воспринимаемая им частота волны уменьшается:

 

 

(2.114)

Если  , то наблюдатель приближается к источнику и частота излучения для него увеличивается:

 

 

(2.115)

При скоростях V << с можно пренебречь отклонением квадратного корня в знаменателях от единицы, и мы приходим к формулам, аналогичным формулам (2.85) для эффекта Доплера в звуковой волне.

Отметим существенную особенность эффекта Доплера для электромагнитной волны. Скорость движущейся системы отсчета играет здесь роль относительной скорости наблюдателя и источника. Полученные формулы автоматически удовлетворяют принципу относительности Эйнштейна, и с помощью экспериментов невозможно установить, что именно движется — источник или наблюдатель. Это связано с тем, что для электромагнитных волн отсутствует среда (эфир), которая играла бы ту же роль, что и воздух для звуковой волны.

Заметим также, что для электромагнитных волн имеет место поперечный эффект Доплера. При  частота излучения изменяется:

 

 

(2.116)

в то время как для звуковых волн движение в направлении, ортогональном распространению волны, не приводило к сдвигу частот. Этот эффект прямо связан с релятивистским замедлением времени в движущейся системе отсчета: наблюдатель на ракете видит увеличение частоты излучения или, в общем случае, ускорение всех процессов, происходящих на Земле.

Найдем теперь фазовую скорость волны

 

в движущейся системе отсчета. Имеем из преобразований Лоренца для волнового вектора:

 

 

(2.117)

Подставим сюда соотношение:

 

 

(2.118)

Получаем:

 

 

(2.119)

Отсюда находим скорость волны в движущейся системе отсчета:

 

 

(3.120)

Мы обнаружили, что скорость волны в движущейся системе отсчета не изменилась и по-прежнему равна скорости света с. Отметим всё же, что, при корректных выкладках, это не могло не получиться, так как инвариантность скорости света (электромагнитных волн) в вакууме есть основной постулат теории относительности уже «заложенный» в использованные нами преобразования Лоренца для координат и времени (3.109).

Пример 1. Фотонная ракета движется со скоростью V = 0.9 с, держа курс на звезду, наблюдавшуюся с Земли в оптическом диапазоне (длина волны   мкм). Найдем длину волны излучения, которую будут наблюдать космонавты.

Длина волны обратно пропорциональна частоте колебаний. Из формулы (2.115) для эффекта Доплера в случае сближения источника света и наблюдателя находим закон преобразования длин волн:

 

 

(2.121)

откуда следует результат:

 

 

(2.122)

По рис. 2.28 определяем, что для космонавтов излучение звезды сместилось в ультрафиолетовый диапазон.

 

Энергия и импульс электромагнитного поля

Объемная плотность энергии w электромагнитной волны складывается из объемных плотностей  электрического и  магнитного полей:

 

(2.123)

Учитывая связь векторов Е и Н, получим, что плотности энергии электрического и магнитного полей в каждый момент времени одинаковы, то есть . Следовательно, w можно представить в виде:

 

(2.124)

Если умножить плотность энергии w на скорость электромагнитной волны в среде

то получим модуль плотности потока энергии:

 

(2.125)

Так как векторы Е и Н взаимно перпендикулярны и образуют с направлением распространения волны правовинтовую систему, то направление вектора

совпадает с направлением распространения волны, то есть с направлением переноса энергии, а модуль этого вектора равен ЕН. Следовательно, вектор плотности потока электромагнитной энергии, называемый вектором Умова-Пойнтинга, имеет вид:

 

(2.126)

Как и для упругих волн, интенсивность электромагнитной волны — это среднее значение плотности потока энергии:

С учетом (2.107) между Е0 и Н0 получаем

 

(2.127)

Как и в упругой (звуковой) волне,

интенсивность пропорциональна квадрату амплитуды колебаний.

Пример 2. Интенсивность солнечного излучения, падающего на Землю, составляет I = 1.4 кВт/м2 (солнечная постоянная). Найдем среднюю амплитуду колебаний E0 вектора электрической напряженности в солнечном излучении. Вычислим амплитуды колебаний напряженности магнитного поля H0 и вектора магнитной индукции B0 в волне.

Ответ находим сразу из уравнений (3.127), где полагаем :

Электромагнитные волны поглощаются и отражаются телами, следовательно, они должны оказывать на тела давление. Рассмотрим плоскую электромагнитную волну, падающую нормально на плоскую проводящую поверхность. В этом случае электрическое поле волны возбуждает в теле ток, пропорциональный Е. Магнитное поле волны по закону Ампера будет действовать на ток с силой, направление которой совпадает с направлением распространения волны. В 1899 г. в исключительно тонких экспериментах П.И. Лебедев доказал существование светового давления. Можно показать, что волна, несущая энергию W, обладает и импульсом:

 

(2.128)

Пусть электромагнитная волна падает в вакууме по нормали на площадь А и полностью поглощается ею. Предположим, что за время  площадка получила от волны энергию . Тогда переданный площадке импульс равен

На площадку действует со стороны волны сила

Давление Р, оказываемое волной, равно

Если средняя плотность энергии в волне равна <w>, то на площадь А за время  попадет энергия из объема  и

Отсюда находим давление электромагнитной волны (света):

 

(2.129)

Если площадка идеально отражает всю падающую на нее энергию, то давление будет в два раза большим, что объясняется очень просто: одинаковый вклад в давление в этом случае дают как падающая, так и отраженная волны, в случае полностью поглощающей поверхности отраженной волны просто нет.

Пример 3. Найдем давление Р солнечного света на Землю. Используем значение солнечной постоянной из предыдущего примера. Искомое давление равно:

Пример 4. Найдем давление Р лазерного пучка на поглощающую мишень. Выходная мощность лазера N = 4.6 Вт, диаметр пучка d = 2.6 мм.

Площадь сечения пучка лазерного излучения

интенсивность излучения

Отсюда находим:

 

Дополнительная информация

http://elementy.ru/trefil/21079 – Эффект Доплера. Материал из «Элементов».

http://www.afizika.ru/zanimatelniestati/181-effektdoplera – Занимательная физика. Эффект Доплера.

http://www.youtube.com/watch?v=xjqcsXQ51m4 – Красивое видео об эффекте Доплера.

http://www.youtube.com/watch?v=JpcNW8AQzMs – Презентация по электромагнитным волнам.

http://www.examens.ru/otvet/7/11/890.html – Электромагнитные волны и их свойства. Принципы радиосвязи и примеры их практического использования.

http://physics.ru/courses/op25part2/content/chapter2/section/paragraph6/theory.html#up – Глава из онлайн-учебника про электромагнитные волны.

http://lib.qrz.ru/node/1347 – Статья об основных параметрах электромагнитных волн

http://elementy.ru/trefil/21131?context=20442 – Спектр электромагнитного излучения.

http://ligis.ru/effects/science/232/index.htm – Упругие волны, распространяющиеся вдоль свободной границы твердого тела или вдоль границы твердого тела с другими средами

http://www.youtube.com/watch?v=llGcqEi2WVw – Влияние среды на скорость распространения электромагнитных волн. Видео.