Необходимое и достаточное условие сходимости ряда (Критерий Коши)
Определение
Ряд называется n-ым остатком ряда.
Следствие 2
Последовательность остатков сходящегося ряда является бесконечно малой.
Доказательство
Если ряд сходится, то из условия Коши, взятого со значением , при переходе m → ∞ получим, что
⇔
(∀ ε > 0 ∃ N = N (ε): ∀ n > N ⇒ |rn| < ε) ⇔ .